राजस्थान विश्वविद्यालय कार्यक्रम का नाम : UG0810-चार वर्षीय बी.एस.सी. (भौतिकी)

विश्वविद्यालय का नाम	राजस्थान विश्वविद्यालय, जयपुर
संकाय का नाम	विज्ञान
कार्यक्रम का नाम	UG0810-बी.एस.सी. (भौतिकी)
विषय का नाम प्रमुख विषय	प्रमुख विषय- भौतिकी
_	लघु विषय- रसायन विज्ञान, गणित

कार्यक्रम की पूर्व-आवश्यकताएँ

केंद्रीय माध्यमिक शिक्षा बोर्ड या समकक्ष के भौतिकी और गणित पाठ्यक्रम। कार्यक्रम परिणाम (PO)

- 1. वैज्ञानिक सिद्धांतों में दक्षता: छात्र भौतिकी, रसायन विज्ञान और गणित में मौलिक वैज्ञानिक सिद्धांतों की मजबूत समझ का प्रदर्शन करेंगे। वे जटिल समस्याओं का विश्लेषण और समाधान करने के लिए इन सिद्धांतों को लागू करने में सक्षम होंगे।
- 2. विश्लेषणात्मक और आलोचनात्मक सोच: छात्र भौतिकी, रसायन विज्ञान और गणित के अध्ययन के माध्यम से विश्लेषणात्मक और आलोचनात्मक सोच कौशल विकसित करेंगे। वे डेटा का मूल्यांकन और व्याख्या करने, परिकल्पना तैयार करने और साक्ष्य के आधार पर तार्किक निष्कर्ष निकालने में सक्षम होंगे।
- 3. मात्रात्मक और कम्प्यूटेशनल कौशल: छात्र मात्रात्मक और कम्प्यूटेशनल विधियों में दक्षता हासिल करेंगे। वे गणना करने, गणितीय अभिव्यक्तियों में हेरफेर करने और वैज्ञानिक समस्याओं को हल करने के लिए कम्प्यूटेशनल टूल का उपयोग करने में सक्षम होंगे।
- 4. प्रायोगिक और प्रयोगशाला कौशल: छात्रों को प्रयोग करने, प्रयोगशाला उपकरणों का उपयोग करने और प्रायोगिक डेटा का विश्लेषण करने में व्यावहारिक अनुभव प्राप्त होगा। वे सटीक माप, डेटा व्याख्या और दस्तावेज़ीकरण के महत्व को समझेंगे।
- 5. समस्या समाधान और मॉडलिंग: छात्र समस्या-समाधान कौशल और वास्तविक दुनिया की घटनाओं का प्रतिनिधित्व करने के लिए गणितीय मॉडल बनाने की क्षमता विकसित करेंगे। वे भौतिकी, रसायन विज्ञान और संबंधित क्षेत्रों में समस्याओं को तैयार करने और हल करने के लिए गणितीय और वैज्ञानिक अवधारणाओं को लागू करेंगे।
- 6. अंतःविषय समझ: छात्र भौतिकी, रसायन विज्ञान और गणित से अवधारणाओं को एकीकृत करके एक अंतःविषय दृष्टिकोण विकसित करेंगे। वे इन विषयों के बीच संबंधों और अन्योन्याश्रितताओं और अन्य वैज्ञानिक और तकनीकी क्षेत्रों में उनके अनुप्रयोगों को समझेंगे।
- 7. प्रभावी संचार: छात्र प्रभावी मौखिक और लिखित संचार कौशल विकसित करेंगे। वे वैज्ञानिक विचारों, सिद्धांतों और प्रयोगात्मक परिणामों को तकनीकी और गैर-तकनीकी दोनों दर्शकों के लिए स्पष्ट और संक्षिप्त रूप से संप्रेषित करने में सक्षम होंगे।
- 8. नैतिक और व्यावसायिक जिम्मेदारी: छात्र वैज्ञानिक अनुसंधान और अभ्यास में नैतिक और पेशेवर मानकों को समझेंगे और उनका पालन करेंगे। वे ईमानदारी, जिम्मेदार आचरण और बौद्धिक संपदा के प्रति सम्मान प्रदर्शित करेंगे।

- 9. आजीवन सीखना: छात्र आजीवन सीखने और पेशेवर विकास के महत्व को पहचानेंगे। उन्हें आगे की पढ़ाई करने, शोध में शामिल होने और भौतिकी, रसायन विज्ञान और गणित में प्रगति के साथ बने रहने के लिए प्रेरित किया जाएगा।
- 10. टीमवर्क और सहयोग: छात्र समूह परियोजनाओं, प्रयोगशाला कार्य और शोध गतिविधियों के माध्यम से टीमवर्क और सहयोग कौशल विकसित करेंगे। वे विविध टीमों में प्रभावी ढंग से काम करने और सामूहिक लक्ष्यों में योगदान करने में सक्षम होंगे।

परीक्षा योजना

- 1. 1 क्रेडिट = परीक्षा/मूल्यांकन के लिए 25 अंक
- 2. नियमित छात्रों के लिए सतत मूल्यांकन होगा, जिसमें सत्रवार कार्य और टर्मिनल परीक्षा अंतिम ग्रेड में योगदान देगी। सेमेस्टर ग्रेड पॉइंट औसत (SGPA) में प्रत्येक कोर्स के दो घटक हैं- सतत मूल्यांकन (20% वेटेज) और (अंतिम सेमेस्टर परीक्षा के अंत में) EoSE (80% वेटेज)।
- 3. नियमित छात्रों के लिए, EoSE में उपस्थित होने के लिए 75% उपस्थिति अनिवार्य है।
- 4. किसी कोर्स/विषय की EoSE परीक्षा में उपस्थित होने के लिए नियमित छात्र को मध्य सेमेस्टर परीक्षा में उपस्थित होना होगा और कोर्स/विषय में कम से कम C ग्रेड प्राप्त करनी होगी।
- 5. किसी कोर्स/विषय में क्रेडिट पॉइंट तभी दिए जाएँगे, जब नियमित छात्र किसी कोर्स/विषय की CA और EoSE परीक्षा में कम से कम C ग्रेड प्राप्त करेगा।
- 6. गैर-कॉलेजिएट छात्रों के मामले में कोई सतत मूल्यांकन नहीं होगा और किसी पाठ्यक्रम/विषय में क्रेडिट अंक केवल तभी दिए जाएंगे, जब गैर-कॉलेजिएट छात्र किसी पाठ्यक्रम/विषय की EoSE परीक्षा में कम से कम C ग्रेड प्राप्त करेगा।

संपर्क घंटे –प्रति सेमेस्टर 15 सप्ताह

(1 क्रेडिट = 1 घंटा/सप्ताह) एल – व्याख्यान टी – ट्यूटोरियल (१ क्रेडिट = १ घंटा/सप्ताह) एस – सेमिनार (१ क्रेडिट = २ घंटे/सप्ताह) पी – प्रैक्टिकल/प्रैक्टिकम (१) क्रेडिट = २ घंटे/सप्ताह) एफ – फील्ड प्रैक्टिस/प्रोजेक्ट (1 क्रेडिट = 2 घंटे/सप्ताह) एसए – स्टुडियो गतिविधियाँ (1 क्रेडिट = 2 घंटे/सप्ताह) आई – इंटर्नशिप (१ क्रेडिट = २ घंटे/सप्ताह) सी – सामुदायिक जुडाव और सेवा (१ क्रेडिट = २ घंटे/सप्ताह)

सतत मूल्यांकन के लिए परीक्षा योजना

सतत मूल्यांकन (CA) अंकों का वितरण

			से)		THE	ORY			PRA	CTICA	۱L
क्रमांक			भार कुल आंतरिक अंकों में से)		कोर (सैद्धांतिक + प्रायोगिक)	AEC	SEC	VAC	CORE (Theory +Practical)	SEC	VAC
	अधिकतम आंतरिक अंक	(<u>6</u>)		30	20	20	10	10	10	10	10
1	मध्यावधि परीक्षा	50	50%		10	10	5	5	5	5	5
2	असाइनमेंट	2.	5%	7.5	5	5	2.5	2.5	2.5	2.5	2.5
		2:	5%	7.5	5	5	2.5	2.5	2.5	2.5	2.5
		<u>=</u>	= 75%	3	2	2	1	1	1	1	1
3	उपस्थिति	त क8 ख़िति	75-80%	4	3	3	1.5	1.5	1.5	1.5	1.5
		नियमित कक्षा उपस्थिति	80-85%	5	4	4	2	2	2	2	2
		正	> 85%	7.5	5	5	2.5	2.5	2.5	2.5	2.5

नोट:

- 1. सतत मूल्यांकन की सम्पूर्ण जिम्मेदारी संबंधित शिक्षक की होगी।
- 2. सतत मूल्यांकन के लिए पेपर सेटिंग, मूल्यांकन, निरीक्षण आदि के लिए कोई पारिश्रमिक नहीं दिया जाएगा।
- 3. सतत मूल्यांकन के लिए पेपर सेटिंग और मूल्यांकन की जिम्मेदारी शिक्षक की होगी।
- 4. सतत मूल्यांकन के लिए विश्वविद्यालय द्वारा कोई उत्तर पुस्तिका/प्रश्न पत्र आदि उपलब्ध नहीं कराए जाएंगे।
- 5. कॉलेजों को सतत मूल्यांकन, उपस्थिति आदि का रिकॉर्ड रखने की सलाह दी जाती है।

[जिन पाठ्यक्रमों में प्रायोगिक परीक्षा होती है]

प्रश्न पत्र में दो भाग А और В होंगे।

भाग-A: 20 अंक

भाग A में 10 अति लघु उत्तरीय प्रश्न (20 शब्दों की सीमा के साथ) अनिवार्य होंगे, जिनमें से प्रत्येक दो अंकों का होगा।

भाग-B: 80 अंक

प्रश्न पत्र के भाग B को चार इकाइयों में विभाजित किया जाएगा, जिसमें प्रश्न संख्या 2-5 शामिल होंगे। प्रत्येक इकाई से एक प्रश्न आंतरिक विकल्प के साथ होगा। प्रत्येक प्रश्न 20 अंकों का होगा।

प्रकार	पेपर कोड और नामकरण	परीक्षा की अवधि	अधिकतम अंक (मिडटर्म + ईओएसई)	न्यूनतम अंक (मिडटर्म + ईओएसई)
सैद्धांतिक(थ्योरी)	UG0810	1 Hrs-MT	20 Marks-MT	8 Marks-MT
		3 Hrs-EoSE	80 Marks-EoSE	32 Marks-EoSE
प्रायोगिक	UG0810	2 Hrs-MT	20 Marks-MT	8 Marks-MT
		4 Hrs-EoSE	80 Marks-EoSE	32 Marks-EoSE

अक्षर ग्रेड और ग्रेड पॉइंट

अक्षर ग्रेड	ग्रेड पॉइंट	अंक रेंज (%)
O (उत्कृष्ट)	10	91-100
A+ (उत्कृष्ट)	9	81-90
A (बहुत अच्छा)	8	71-80
B+ (अच्छा)	7	61-70
B (औसत से ऊपर)	6	51-60
C (औसत)	5	40-50
P (पास)	4	
F (फेल)	0	
Ab (अनुपस्थित)	0	

जब छात्र ऑडिट कोर्स करते हैं, तो उन्हें बिना किसी क्रेडिट के पास (P) या फेल (F) ग्रेड दिया जा सकता है।

Name of University	University of Rajasthan, Jaipur
Name of Faculty	UG0810-B. Sc. (Physics)
Name of Discipline	Physics

SEMESTER-WISE PAPER TITLES WITH DETAILS

UG0810-B. Sc. (Maths Group)

				PHYSICS	Cre	edits		
#	Level	Semeste	Туре	Title	L	Т	P	Total
1.	5	1	MJR	UG0810-PHY-51T-101-Mechanics	4	0	0	4
2.	5	1	MJR	UG0810-PHY-51T-102-Electricity and Magnetism	4	0	0	
3.	5	1	MJR	UG0810-PHY-51P-103-Physics Lab-I	0	0	4	4
4.	5	П	MJR	UG0810-PHY-52T-104-Oscillations & Wave	4	0	0	4
5.	5	П	MJR	UG0810-PHY-52T-105-Thermal & Statistical Physics	4	0	0	4
6.	5	П	MJR	UG0810-PHY-52P-106-Physics Lab-II	0	0	4	4
7.	6	Ш	MJR	UG0810-PHY-63T-201-Optics	4	0	0	4
8.	6	Ш	MJR	UG0810-PHY-63T-202-Mathematical Physics	4	0	0	4
9.	6	Ш	MJR	UG0810-PHY-63P-203-Physics Lab-III	0	0	4	4
10.	6	IV	MJR	UG0810-PHY-64T-204-Elementary Quantum Mechanics	4	0	0	4
11.	6	IV	MJR	UG0810-PHY-64T-205-Electronics and Solid-State Devices	4	0	0	4
12.	6	IV	MJR	UG0810-PHY-64P-206-Physics Lab-IV	0	0	4	4
13.	7	V	MJR	UG0810-PHY-75T-301-Introductory Nuclear and Particle Physics	4	0	0	4
14.	7	V	MJR	UG0810-PHY-75T-302-Numerical Methods and Computer Programming	4	0	0	4
15.	7	V	MJR	UG0810-PHY-75P-303-Physics Lab-V	0	0	4	4
16.	7	VI	MJR	UG0810-PHY-76T-304-Physics of Materials	4	0	0	4
17.	7	VI	MJR	UG0810-PHY-76T-305-Atomic and Molecular Physics	4	0	0	4
18.	7	VI	MJR	UG0810-PHY-76P-306-Physics Lab-VI	0	0	4	4

पाठ्यक्रम UG0810-PHY-51T-101- यांत्रिकी

सेमेस्टर	पाठ्यक्रम का कोड	पाठ्यक्रम/पेपर का शीर्षक	NHEQF स्तर	क्रेडिट			
I	UG0810-PHY-51T-101	यांत्रिकी	5	4			
पाठ्यक्रम का स्तर	पाठ्यक्रम का प्रकार	पाठ्यक्रम का वितरण प्रकार					
प्रारंभिक	प्रमुख/लघु	व्याख्यान, व्याख्यान समय के दौरान निदानात्मक और रचनात्मक मूल्यांकन सहित साठ व्याख्यान।					
पूर्वापेक्षाएँ	केंद्रीय माध्यमिक शिक्षा बोर्ड या समकक्ष के भौतिकी और गणित पाठ्यक्रम।						
पाठ्यक्रम के उद्देश्य	इस पाठ्यक्रम का उद्देश्य छात्रों को यांत्रिकी और विशेष सापेक्षता से चयनित विषयों की व्यापक समझ प्रदान करना है। पाठ्यक्रम का उद्देश्य जड़त्वीय और अजड़त्वीय निर्देश तंत्र दोनों में वस्तुओं की गति को नियंत्रित करने वाले सिद्धांतों और कानूनों में एक मजबूत आधार विकसित करना है।						

इकाई -1

जड़त्वीय और अजड़त्वीय निर्देश तंत्र :

- (i) जड़त्वीय और अजड़त्वीय निर्देश तंत्र एवं उदाहरण । विस्थापन, वेग, त्वरण का रूपांतरण जब विभिन्न निर्देश तंत्रों के मध्य स्थानान्तरणीय गति हो, न्यूटन के नियमों की निश्चरता और टक्कर की प्रक्रिया में ऊर्जा संरक्षण।
- (ii) सापेक्षिता के विशिष्ट सिद्धांत के अभिग्रहित, वेग एवं त्वरण का लॉरेंज रूपांतरण, काल वृद्धि एवं लम्बाई में संकुचन, लॉरेंज रूपांतरण आकाशीय समय निर्देश तंत्र में घूर्णन के रूप में, वर्ल्ड लाइन

और मिंकोञ्स्की आकाशीय रूप में, समय और अंतरिक्ष सदिश रूप, एवं स्थूल कारणता, प्रकाश शंकु-अतीत, वर्तमान और भविष्य में।

(iii) एक दूसरे के सापेक्ष घूर्णन गति करते हुए निर्देश तंत्र में विस्थापन, वेग एवं त्वरण का रूपांतरण, छद्मबल, अपकेंद्रीय बल एवं कोरिओलिस बल, पृथ्वी के सापेक्ष गति (उत्तरी और दक्षिणी गोलार्ध में), अक्षांशीय स्थिति, पृथ्वी पर गतिशील विभिन्न पिंडो पर कोरिओलिस बल का प्रभाव और फोको का लोलक। (15 व्याख्यान)

इकाई -॥

संरक्षण के नियम: संरक्षी बल, गुरुत्वाकर्षण और स्थिरविद्धुत क्षेत्र की स्थितिज ऊर्जा, संरक्षी बल क्षेत्र में सरल रेखीय गित, स्थितिज ऊर्जा वक्र और कण की गित का अध्ययन। द्रव्यमान का केंद्र, द्विकण निकाय: द्रव्यमान केंद्र के अंतर्गत गित और एक कण की दूसरे कण के सापेक्ष गित। समानीत द्रव्यमान, रैखिक गित का संरक्षण, रैखिक तथा द्विविमिय गित (प्रत्यास्थ एवं अप्रत्यास्थ) में दो कणों की टक्कर। न्यूट्रॉन मंदन प्रक्रिया। परिवर्ती द्रव्यमान वाले निकाय की गित। कोणीय संवेग संरक्षण और नाभिक द्वारा आवेशित कण का प्रकीर्णन।

कणों के निकाय की यांत्रिकी: कणों के निकाय के द्रव्यमान केंद्र की गति, द्रव्यमान केंद्र निर्देश तंत्र के सापेक्ष गित, प्रयोगशाला निर्देश तंत्र और द्रव्यमान केंद्र निर्देश तंत्र में कणों की गतिज ऊर्जा और कोणीय संवेग के मध्य संबंध। ऊर्जा का संरक्षण, कणों के निकाय की घूर्णन गित का समीकरण, कोणीय संवेग संरक्षण (15 व्याख्यान)

इकाई-॥।

केंद्रीय बलों के अंतर्गत गति और गुरुत्वाकर्षण:

गुरुत्वाकर्षण का नियम, गुरुत्वाकर्षण और जड़त्वीय द्रव्यमान, गुरुत्वाकर्षण स्थितिज ऊर्जा और गुरुत्वाकर्षण क्षेत्र, अध्यारोपण का सिद्धांत, एक बड़ी प्लेट द्वारा गुरुत्वाकर्षण क्षेत्र, खोखला गोले एवं ठोस गोले के कारण गुरुत्वाकर्षण क्षेत्र, केंद्रीय बलों के प्रभाव में गित, सामान्य हल एवं प्रपथ पर चर्चा, रदरफोर्ड प्रकीर्णन (दीर्घवृताकार और वृताकार कक्षा), केप्लर के नियम।

सापेक्ष गतिकी: चतुर्विम सदिश, ऊर्जा एवं संवेग का रूपांतरण, प्रयोगशाला निर्देश तंत्र तथा द्रव्यमान केंद्र निर्देश फ्रेम में रूपांतरण, चतुर्विम आवृति सदिश रूपांतरण, अनुदैर्ध्य और अनुप्रस्थ डॉप्लर प्रभाव, चतुर्विम संवेग संरक्षण, दो कणो की प्रत्यास्थ व अप्रत्यास्थ टक्कर,एक अस्थिर कण के क्षय उत्पादों की गतिकी, देहली ऊर्जा की अभिक्रिया, युग्म उत्पादन, कॉम्पटन प्रभाव। (15 व्याख्यान)

इकाई-IV

- i. **दृढ़ पिंड गतिकी :** घूर्णनशील पिंड की गित का समीकरण, जड़त्वीय नियतांक , चकती , बेलन , गोलीय कोश , ठोस गोले , आयताकार एवं वृत्ताकार अनुप्रस्थ काट की छड़ का जड़त्व आघूर्ण ,घूर्णन गितज ऊर्जा और मुख्य अक्षों में । के समानांतर नहीं होने की स्थिति , चक्रण करते हुए लट्टू की पुरस्सरण गित ,घूर्णदर्शी, असमान चुंबकीय क्षेत्र में पुरस्सरण चक्रण |
- ii. प्रत्यास्थता: यंग प्रत्यास्थता गुणांक, आयतन प्रत्यास्थता गुणांक,अपरूपण गुणांक,पाँइसन अनुपात, विभिन्न प्रत्यास्थता गुणांकों में परस्पर सम्बन्ध, दंडो का बंकन, बेलन का ऐंठन, प्रत्यास्थता गुणांकों का स्थैतिक व गतिक विधि से प्रायोगिक निर्धारण। (15 व्याख्यान)

सुझाई गई पुस्तकें और संदर्भ -

1. मैकेनिक्स, बर्कले फिजिक्स, खंड 1, किटेल, नाइट, एट अल. 2007, टाटा मैकग्रॉ-हिल

- 2. मैकेनिक्स का परिचय, डी. क्लेपनर, आर.जे. कोलेनकोव, 1973, मैकग्रॉ-हिल
- 3. फेनमैन व्याख्यान, खंड 1, आर.पी. फेनमैन, आर.बी. लीटन, एम. सैंड्स, 2008, पियर्सन एजुकेशन।
- 4. सैद्धांतिक भौतिकी का पाठ्यक्रम, खंड-1 मैकेनिक्स, एल.डी. लैंडौ, ई.एम. लिप्शिट्ज़, बटरवर्थ-हेनमैन
- 5. मैकेनिक्स, डी.एस. माथुर, एस. चंद एंड कंपनी लिमिटेड,
- 6. सैद्धांतिक मैकेनिक्स, एम.आर. स्पीगल, 2006, टाटा मैकग्रॉ हिल।
- 7. चिरसम्मत यांत्रिकी का परिचय: समस्याओं और समाधानों के साथ, डेविड मोरिन
- 8. चिरसम्मत यांत्रिकी, हर्बर्ट गोल्डस्टीन, चार्ल्स पी. पूल, और जॉन एल. सफ्को
- 9. चिरसम्मत यांत्रिकी, जॉन आर. टेलर
- 10. यांत्रिकी, कीथ आर. साइमन

सुझाए गए ई-संसाधन:

- 1. ऑनलाइन व्याख्यान नोट्स और पाठ्यक्रम पदार्थ :
- एमआईटी ओपनकोर्सवेयर: चिरसम्मत यांत्रिकी यह संसाधन चिरसम्मत यांत्रिकी पर एक पूर्ण पाठ्यक्रम के लिए व्याख्यान नोट्स, समस्या सेट और समाधान प्रदान करता है: https://ocw.mit.edu/courses/physics/8-01sc-classical-mechanics-fall-2016/
- हाइपरिफजिक्स यह ऑनलाइन संसाधन यांत्रिकी में विभिन्न विषयों के लिए संक्षिप्त स्पष्टीकरण और इंटरैक्टिव सिमुलेशन प्रदान करता है: http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html

सीखने के परिणाम

इस कोर्स के अंत तक, छात्रों को चिरसम्मत यांत्रिकी, विशेष सापेक्षिता और प्रत्यास्था में चयनित विषयों की एक मजबूत समझ विकसित होगी। वे विभिन्न भौतिक घटनाओं का विश्लेषण करने, गित और बलों से संबंधित समस्याओं को हल करने और यांत्रिकी के क्षेत्र में विभिन्न अवधारणाओं के बीच संबंध बनाने के लिए मौलिक सिद्धांतों और नियमों को लागू करने में सक्षम होंगे।

पाठ्यक्रम UG0810-PHY-51T-102- विद्युत और चुंबकत्व

सेमेस्टर	पाठ्यक्रम का कोड	पाठ्यक्रम/पेपर का शीर्षक	NHEQF स्तर	क्रेडिट		
I	UG0810-PHY-51T-102	विद्युत और चुंबकत्व	5	4		
पाठ्यक्रम का स्तर	पाठ्यक्रम का प्रकार	पाठ्यक्रम का वितरण प्रकार				
प्रारंभिक	प्रमुख/लघु	व्याख्यान, व्याख्यान समय के दौरान निदानात्मक और रचनात्मक मूल्यांकन सहित साठ व्याख्यान।				
पूर्वापेक्षाएँ	केंद्रीय माध्यमिक शिक्षा बोर्ड या	समकक्ष के भौतिकी और गणित पाठ्यक्रम	ŦI			

पाठ्यक्रम के उद्देश्य इस कोर्स का उद्देश्य छात्रों को वेक्टर फ़ील्ड, इलेक्ट्रोस्टैटिक्स, मैग्नेटोस्टैटिक्स, पदार्थ में विद्युत क्षेत्र और विद्युत चुम्बकीय प्रेरण की व्यापक समझ प्रदान करना है। इस कोर्स का उद्देश्य इन विषयों से संबंधित सिद्धांतों और गणितीय तकनीकों और भौतिकी में उनके अनुप्रयोगों में एक मजबूत आधार विकसित करना है।

इकाई - ।

सदिश क्षेत्र: आंशिक अवकलन, अदिश क्षेत्र की प्रवणता, सदिश क्षेत्र का रेखीय समाकलन, कार्तीय निर्देशांकों के रूप में सदिश क्षेत्र का अपसरण, गॉस की अपसरण प्रमेय, सदिश क्षेत्र के अपसरण का भौतिक महत्व, व्युत्क्रम वर्ग नियम से गॉस के ठोस कोण की अवधारणा, गॉस का व्यूत्क्रमण नियम तथा उसका अवकलन स्वरुप, पॉइसन और लाप्लास समीकरण, सदिश फलन का कर्ल, निर्देशांकों के रूप में कर्ल, स्टोक्स का कर्ल प्रमेय, सदिश क्षेत्र के कर्ल का भौतिक महत्त्व, डेल ऑपरेटर का उपयोग करके की सदिश पहचान।

गतिशील आवेशों का क्षेत्र: स्थिरविद्धुत क्षेत्र की अवधारणा- विभक्त आवेशों और सतत आवेशों के वितरण के कारण किसी बिंदु पर विभव ,आवेशों के निकाय की स्थितिज ऊर्जा , अनुप्रयोग: गोले को समावेशित करने के लिए आवश्यक ऊर्जा, इलेक्ट्रॉन की चिरसम्मत त्रिज्या , लघु द्विध्रुव (ध्रुवीय और त्रि-आयामी कार्तीय निर्देशांक में) के कारण विभव और क्षेत्र, बाह्य क्षेत्र में द्विध्रुव पर बलाघूर्ण और बल | (15 व्याख्यान)

इकाई -॥

चुंबकीय बल, गतिमान आवेश का मापन, आवेश की निश्चरता,विभिन्न निर्देशांक तंत्रों में विद्युत क्षेत्र का मापन, एकसमान वेग से गतिमान एक बिंदु आवेश के कारण क्षेत्र, गतिमान आवेश पर बल , गतिमान आवेश और अन्य गतिमान आवेशों के बीच अंतःक्रिया।

मुक्त आकाश में चुंबकीय क्षेत्र एवं पदार्थ: चुंबकीय क्षेत्र की परिभाषा, चुंबकीय क्षेत्र के गुण, ऐम्पियर का परिपथीय नियम तथा उसके अनुप्रयोग। सदिश विभव द्वारा ऐम्पियर के नियम का अवकलन रूप, सदिश विभव के लिए पायसन समीकरण। सदिश विभव एवं चुंबकीय क्षेत्र का निर्माण (i) एक अनंत धारावाही परिनालिका (ii) किसी सीधे लंबे धारावाही तार के कारण (ii) किसी सीधे धारावाही लंबे तार के अंदर चुंबकीय क्षेत्र का निर्माण और बायो-सावर्त नियम की उत्पति।।

दो जड़त्वीय निर्देश तंत्रो के बीच विद्युत और चुंबकीय क्षेत्रों के विभिन्न घटकों के लिए रूपांतरण संबंध।

धारावाही वलय का क्षेत्र, बाहरी क्षेत्र में चुंबकीय द्विध्रुव पर बल, परमाणुओं में विद्युत धाराएँ, बोहर मेग्नेटोन, कक्षीय जायरोमैग्नेटिक अनुपात, इलेक्ट्रॉन चक्रण और चुंबकीय आघूर्ण, चुंबकीय प्रवृति, चुंबिकत पदार्थ के कारण चुंबकीय क्षेत्र। चुंबकन धाराएँ, मुक्त धाराएँ और चुंबकन क्षेत्र (H) | (15 व्याख्यान)

इकाई -॥।

पदार्थ में विद्युत क्षेत्र: विभक्त आवेशों और सतत आवेशों की वितरण की प्रणाली के कारण विद्युत आघूर्ण, विभक्त आवेश वितरण के द्विध्ववीय और चतुर्ध्रुवीय आघूर्ण, उदाहरण: परमाणु और आणविक द्विध्रुव। परमाण्विक ध्रुवणता तथा स्थायी द्विध्रुव आघूर्ण, परावैद्युत माध्यम से भरा संधारित्र, ध्रुवीकृत गोले के कारण विभव और क्षेत्र, परावैद्युत माध्यम में आवेश का क्षेत्र और गॉस नियम, विद्युतीय प्रवृति एवं परमाण्विक ध्रुवणता के बीच संबंध, परिवर्ती क्षेत्र में ध्रुवीकरण, बंधित आवेश (ध्रुवीकरण) धारा (15 व्याख्यान)

इकाई-ıv

विद्युत चुम्बकीय प्रेरण और मैक्सवेल के समीकरण: विद्युत चुम्बकीय प्रेरण और मैक्सवेल के समीकरण: फैराडे का विद्युत चुम्बकीय प्रेरण का नियम, एकसमान चुंबकीय क्षेत्र में गतिमान आवेशित छड़, असमान चुंबकीय क्षेत्र में गतिमान कुंडली। फैराडे के नियम का अवकल रूप, प्रेरकत्व, एकसमान लंबाई की परिनालिका का स्वप्रेरकत्व, अन्योन्य प्रेरण, दो कुंडलियों के बीच अन्योन्य प्रेरकत्व, सीधे चालक के तार का स्वप्रेरकत्व, प्रेरक में संग्रहित ऊर्जा | विस्थापन धारा, एम्पीयर का संशोधित नियम, अवकलन और समाकलन रूपों में मैक्सवेल के समीकरण। पदार्थ-माध्यम में मैक्सवेल के समीकरण, निर्वात-परमाणु और निर्वात-धातु सीमाओं पर विद्युत और चुंबकीय क्षेत्रों के लिए परिसीमन सीमायें |

सुझाई गई पुस्तकें और संदर्भ –

- 1. बर्कले भौतिकी पाठ्यक्रम, खंड 2 विद्युत और चुंबकत्व।
- 2. फेनमैन इन फिजिक्स खंड 2
- 3. ग्रिफिथ्स द्वारा इलेक्ट्रोडायनामिक्स का परिचय
- 4. फंडामेंटल यूनिवर्सिटी फिजिक्स, खंड 2 क्षेत्र और तरंगें-अलोंसो और फिन द्वारा।

सुझाए गए ई-संसाधन:

- 1. ऑनलाइन व्याख्यान नोट्स और पाठ्यक्रम पदार्थ :
- एमआईटी ओपनकोर्सवेयर: विद्युत और चुंबकत्व यह संसाधन विद्युत और चुंबकत्व पर एक पूर्ण पाठ्यक्रम के लिए व्याख्यान नोट्स, असाइनमेंट और परीक्षा प्रदान करता है: https://ocw.mit.edu/courses/physics/8-02sc-physics-ii-electricity-and-magnetism-spring-2011/

पाठ्यक्रम के सीखने के परिणाम:

इस कोर्स के अंत तक, छात्रों को सदिश क्षेत्र, इलेक्ट्रोस्टैटिक्स, मैग्नेटोस्टैटिक्स, पदार्थ में विद्युत क्षेत्र और विद्युत चुम्बकीय प्रेरण की एक मजबूत समझ विकसित हो जाएगी। वे इन क्षेत्रों में जटिल समस्याओं का विश्लेषण और समाधान करने के लिए सीखे गए सिद्धांतों और गणितीय तकनीकों को लागू करने में सक्षम होंगे। इसके अतिरिक्त, वे विद्युत चुंबकत्व के भीतर विभिन्न अवधारणाओं के बीच संबंध बनाने और उन्हें वास्तविक दुनिया के परिदृश्यों में लागू करने में सक्षम होंगे।

पाठ्यक्रम UG0810-PHY-51P-103: भौतिकी प्रयोगशाला-।

सेमेस्टर	पाठ्यक्रम का कोड	पाठ्यक्रम/पेपर का शीर्षक	NHEQF स्तर	क्रेडिट
I	UG0810-PHY-51P-103	भौतिकी प्रायोगिक प्रयोगशाला-।	5	4

पाठ्यक्रम का स्तर	पाठ्यक्रम का प्रकार	पाठ्यक्रम का वितरण प्रकार			
प्रारंभिक	प्रमुख/लघु	प्रायोगिक, एक सौ बीस घंटे का प्रायोगिक, जिसमें प्रायोगिक घंटों के दौरान निदानात्मक और रचनात्मक मूल्यांकन शामिल है।			
पूर्वापेक्षाएँ	केंद्रीय माध्यमिक शिक्षा बोर्ड या समकक्ष के भौतिकी और गणित पाठ्यक्रम।				
पाठ्यक्रम के उद्देश्य		की जांच करना सिद्धांतों को सत्यापित करना धियाँ विकसित करना । मापना र निष्कर्ष निकालना हा परीक्षण करना । पता लगाना			

कॉलेज समतुल्य मानकों के नए प्रयोग करने के लिए स्वतंत्र हैं। शैक्षणिक सत्र की शुरुआत से पहले संयोजक, अध्ययन बोर्ड द्वारा इसकी सूचना और अनुमोदन किया जाना चाहिए। कॉलेज के लिए नीचे सूचीबद्ध कम से कम दस प्रयोगों का एक प्रयोगात्मक सेट-अप रखना बाध्यकारी है। यदि छात्र द्वारा किए गए प्रयोगों की संख्या आठ से कम है, तो अंतिम परीक्षा में उसके अंकों को आनुपातिक आधार पर घटा दिया जाएगा। प्रयोगशाला परीक्षा का पेपर केंद्र में उपलब्ध आठ या अधिक प्रयोगों में से बाहरी परीक्षक द्वारा निर्धारित किया जाएगा। परीक्षा योजना-

विद्यार्थी को परीक्षा में दो प्रयोग करना आवश्यक है | परीक्षा दो दिन चलेगी | प्रत्येक दिन परीक्षा समय 4) घंटे होगा

अंक वितरण-

प्रायोगिक-1	प्रायोगिक-2	मौखिक	रिकॉर्ड(Record)	अधिकतम अंक
30	30	10	10	80

प्रायोगिक परीक्षा में अंक विभाजन

सिद्धांत/सूत्र	चित्र/परिपथ	अवलोकन	गणना	परिणाम/त्रुटि	सावधानियां
4	4	10	6	4	2

प्रयोगों की सूची:

1. युग्मित दोलित्र की सहायता से वृहत कोणीय दोलनों के लिए आवर्तकाल का आयाम के साथ परिवर्तन का अध्ययन करना।

- 2. युग्मित दोलित्र का उपयोग करके अवमंदन का अध्ययन करना।
- 3. युग्मित दोलक के प्रसामान्य विधाओं और इनकी आवृतियो में विभाजन का अध्ययन करना।
- 4. एक युग्मित दोलक का उपयोग कर उसके घटक दोलकों के मध्य ऊर्जा अंतरण की प्रावृत्ति का युग्मन तीव्रता के साथ अध्ययन करना ।
- 5. एक पिण्ड लोलक के श्यान द्रव के अवमन्दन का अध्ययन कर लोलक का अवमन्दन गुणांक और विशेषता गुणांक ज्ञात करना।
- 6. एक पिण्ड लोलक में विद्युत-चुम्बकीय अंवमन्दन का अध्ययन कर घातु की प्लेट से चुम्बक की दूरी के साथ अवमन्दन गुणांक के परिवर्तन को ज्ञात करना।
- 7. युग्मित दोलक के सामान्य विधा का अध्ययन करना। मिश्रित विधाओं में दोलनों का अध्ययन करना और घटक दोलको के बीच ऊर्जा विनिमय का आवर्त काल के साथ अध्ययन करना।
- 8. बंकन विधि से यंग के गुणांक का निर्धारण करना।
- 9. सर्ल की विधि द्वारा Υ, σ और η का निर्धारण करना।
- 10. मैक्सवेल की सुई का उपयोग करके तार के अपरूपण गुणांक को ज्ञात करना।
- 11. फ्लाई व्हील के जड़त्व आघूर्ण को ज्ञात करना।
- 12. स्प्रिंग की गति का अध्ययन करना और a) स्प्रिंग नियतांक b) गुरुत्वाकर्षण (g) के कारण त्वरण c) हृद्वामापांक का मान ज्ञात करना।-
- 13. रैखिक पथ का प्रयोग:
 - 1. नियत वेग गति।
 - 2. त्वरित गति।
 - 3. आवर्त गति।
 - 4. अनावर्त गति।
 - स्थितिज ऊर्जा वक्र और ऊर्जा संरक्षण।
 - 6. प्रत्यास्थ टक्कर और संरक्षण नियम
- 14. साधारण दोलित्र के साथ प्रयोग:
 - 1. अप्रत्यास्थ टक्कर ।
 - 2. आयाम के साथ समय अवधि का परिवर्तन।
 - 3. दो लंबवत सरल आवर्त गति का संयोजन।
 - 4. आवृत्ति प्रतिक्रिया।
 - 5. अवमंदन और 'O' मान।
 - 6. कला वक्र
- 15. युग्मित दोलित्र के साथ प्रयोग:
 - 1. सामान्य मोडों का उत्तेजन और आवृत्ति माप
 - 2. युग्मन शक्ति के फलन के रूप में ऊर्जी स्थानांतरण की अवधि
- 16. मरोड़ी तरंग उपकरण प्रयोग (Torsional Wave Apparatus):
 - 1. तरंग संचरण का वेग।
 - 2. दोनों सिरे खुले, एक सिरा खुले सामान्य मोडों का उत्तेजना

- 3. प्रतिबाधा मिलान (impedance matching)
- 17. धारावाही वृत्ताकार कुंडली के अक्ष के अनुदिश चुंबकीय क्षेत्र का अध्ययन करें। आवश्यक ग्राफ बनाएं और वृत्ताकार कुंडली की त्रिज्या ज्ञात करें।

सुझाई गई पुस्तकें और संदर्भ –

सुझाए गए ई-संसाधन।

पाठ्यक्रम सीखने के परिणाम:

इन प्रयोगों के माध्यम से, छात्र प्रयोगात्मक तकनीकों, डेटा संग्रह, विश्लेषण और व्याख्या में व्यावहारिक कौशल विकसित करेंगे। वे दोलनों, अवमंदन, युग्मित दोलक और भौतिक गुणों में मौलिक अवधारणाओं और सिद्धांतों की अपनी समझ को भी बढ़ाएँगे। प्रयोगशाला के अनुभव आलोचनात्मक सोच, समस्या-समाधान क्षमताओं और सैद्धांतिक ज्ञान को वास्तविक दुनिया के परिदृश्यों में लागू करने को बढ़ावा देंगे।

पाठ्यक्रम UG0810-PHY-52T-104-ढोलन और तरंग

सेमेस्टर	पाठ्यक्रम का कोड	पाठ्यक्रम/पेपर का शीर्षक	NHEQF स्तर	क्रेडिट		
II	UG0810-PHY-52T-104	दोलन और तरंग	5	4		
पाठ्यक्रम का स्तर	पाठ्यक्रम का प्रकार	पाठ्यक्रम का वितरण प्रकार				
प्रारंभिक	प्रमुख/लघु	व्याख्यान, व्याख्यान समय के दौरान निदानात्मक और रचनात्मक मूल्यांकन सहित साठ व्याख्यान।				
पूर्वापेक्षाएँ	केंद्रीय माध्यमिक शिक्षा बोर्ड या	केंद्रीय माध्यमिक शिक्षा बोर्ड या समकक्ष के भौतिकी और गणित पाठ्यक्रम।				
पाठ्यक्रम के उद्देश्य	इस पाठ्यक्रम का उद्देश्य छात्रों को दोलनों और तरंग परिघटनाओं की व्यापक समझ प्रदान करना है। पाठ्यक्रम का उद्देश्य दोलन गति और तरंग प्रसार से संबंधित सिद्धांतों और गणितीय तकनीकों और विभिन्न भौतिक प्रणालियों में उनके अनुप्रयोगों में एक मजबूत आधार विकसित करना है।					

इकाई।

एक स्वतंत्रता कोटि वाले निकायों के मुक्त दोलन, स्वैच्छिक विभव कूप में दोलन, सरल आवर्त गित- सिम्भिश्र चर घातांकीय का उपयोग करके हल, यांत्रिक और विद्युतीय निकायों के उदाहरण, दोलक की ऊर्जा, श्यान और ठोस घर्षण के अंतर्गत दोलक की ऊर्जा क्षय और अवमंदन। (i) दो और (ii) N- रैखिक अनावमंदित आवर्त दोलनों का अध्यारोपण, विस्पंद। समकोण पर दो दोलनों का संयोजन। अनावर्ती दोलक- उदाहरण के रूप में लोलक।

(15 व्याख्यान)

इकाई ॥

अनावमंदित दोलक के साथ आवर्ती बल, अवमंदन के साथ प्रणोदित दोलन। प्रतिरोधक पद पर परिवर्ती का प्रभाव, क्षणिक घटना, एक प्रणोदित दोलक द्वारा अवशोषित शक्ति, आवृत्ति अनुक्रिया, कला संबंध, गुणवत्ता कारक, अनुनाद: विद्युतीय दोलन श्रेणी और समानांतर LCR परिपथ। विद्युत यांत्रिक निकाय बैलिस्टिक गैल्वेनोमीटर, अवमंदन का प्रभाव। क्रिस्टल का प्रकाशीय ऊष्मीय-प्रसार। विद्युतीय उपकरणों में औरखिक प्रभाव। ध्वनिक तरंगों में औरखिक प्रभाव। (15 व्याख्यान)

इकाई ॥।

दो युग्मित सरल आवर्त दोलकों की गित, धारिता युग्मित दोलित्रों की कठोरता के लिए अवकलज समीकरण, सामान्य विधाएँ, मिश्रित विधाओं में गित, क्षणिक व्यवहार। युग्मन का प्रभाव, CO2 और H2O अणुओं के लिए कंपन की सामान्य विधाएँ। दो युग्मित दोलकों के लिए सामान्य विधा आवृत्तियों की गणना, युग्मित दोलन और

अनुनाद। विद्युतीय रूप से युग्मित परिपथ की आवृत्ति अनुक्रिया, परावर्तित प्रतिबाधा, युग्मन का प्रभाव (प्रेरक स्थिति) और प्रतिरोधक भार।

अनेक युग्मित दोलक: N-युग्मित दोलक, सामान्य विधाएँ और उनके गुण, अनुदैर्ध्य दोलक, एकविमीय एकपरमाणुक और द्विपरमाणुक जालकों के लिए गति का समीकरण, ध्वनिक और प्रकाशीय विधाएँ, परिक्षेपण संबंध, समूह और कला वेग की अवधारणा। विद्युतीय संचरण लाइन, संचरण वेग, हानियाँ, अभिलाक्षणिक प्रतिबाधा, अप्रगामी तरंगें, समापन का प्रभाव। (15 व्याख्यान)

इकाई ।۷

एक विमीय तरंग समीकरण व ठोस छड़, गैस स्तंभ, डोरी पर अनुप्रस्थ तरंगों में प्रत्यास्थ तरंगों के लिए इसका हल। द्वि विमीय निकाय की सामान्य विधाएँ। दो और तीन आयामों में तरंगों, गोलीय तरंगें। सीमा पर डोरी में तरंगों का परावर्तन और संचरण। फ़्रांतिन और संचरण। प्रतिबाधाओं का सुमेलन। निश्चित लंबाई की डोरी पर अप्रगामी तरंगें, कंपित डोरी की ऊर्जा, कंपित डोरी के प्रत्येक सामान्य विधा में ऊर्जा, अप्रगामी तरंग अनुपात। फ़्रियर श्रेणी और त्रिकोणीय, आरादांती और वर्गाकार फलनों का विश्लेषण। समतल विद्युत चुम्बकीय तरंगें, तरंग समीकरण और इसका समतल तरंग हल, ऊर्जा और संवेग, विकिरण दाब, मुक्त आकाशीय विकिरण प्रतिबाधा। परिक्षेपण माध्यम में विद्युत चुम्बकीय तरंग (सामान्य स्थिति), विद्युत चुम्बकीय विकिरणों का स्पेक्ट्रम।

(१५ व्याख्यान)

सुझाई गई पुस्तकें और संदर्भ -

- 1. कंपन और तरंगें -एपी फ्रेंच
- 2. कंपन और तरंगों का भौतिकी -एच. पेन
- 3. तरंगें और दोलन, बर्कले भौतिकी पाठ्यक्रम खंड 3.

सुझाए गए ई-संसाधन-

1. एमआईटी ओपनकोर्सवेयर: दोलन और तरंगों का परिचय - यह संसाधन बिजली और चुंबकत्व पर एक पूर्ण पाठ्यक्रम के लिए व्याख्यान नोट्स, असाइनमेंट और परीक्षा प्रदान करता है: https://ocw.mit.edu/courses/res-8-009-introduction-to-oscillations-and-waves-summer-2017/

पाठ्यक्रम के सीखने के परिणाम:

इस पाठ्यक्रम के अंत तक छात्रों में दोलन (oscillations) और तरंग घटनाओं (wave phenomena) की गहरी समझ विकसित हो जाएगी। वे विभिन्न भौतिक प्रणालियों में दोलनशील गति (oscillatory motion) और तरंग संचरण (wave propagation) से संबंधित समस्याओं का विश्लेषण और समाधान करने में सक्षम होंगे। साथ ही, वे सीखे गए सिद्धांतों और गणितीय तकनीकों को वास्तविक दुनिया के परिदृश्यों में तरंग घटनाओं की व्याख्या और विश्लेषण के लिए लागू करने में सक्षम होंगे।

पाठ्यक्रम UG0810-PHY-52T-105- ऊष्मीय और सांख्यिकीय भौतिकी

सेमेस्टर	पाठ्यक्रम का कोड	पाठ्यक्रम/पेपर का शीर्षक	NHEQF स्तर	क्रेडिट	
II	UG0810-PHY-52T-105	ऊष्मीय और सांख्यिकीय भौतिकी	5	4	
पाठ्यक्रम का स्तर	पाठ्यक्रम का प्रकार	पाठ्यक्रम का वितरण प्रकार			
प्रारंभिक	प्रमुख/लघु	व्याख्यान, व्याख्यान समय के दौरान निदानात्मक और रचनात्मक मूल्यांकन सहित साठ व्याख्यान।			
पूर्वापेक्षाएँ		समकक्ष के भौतिकी और गणित पाठ्यक्रम			
पाठ्यक्रम के उद्देश्य	इस पाठ्यक्रम का उद्देश्य छात्रों को ऊष्मीय और सांख्यिकीय भौतिकी की व्यापक समझ प्रदान करना है। पाठ्यक्रम का लक्ष्य ऊष्मागतिकी (थर्मोडायनामिक्स) और सांख्यिकी यांत्रिकी के सिद्धांतों और अवधारणाओं में एक मजबूत आधार विकसित करना है, साथ ही स्थूल और सूक्ष्म प्रणालियों के व्यवहार का वर्णन करने में उनके अनुप्रयोगों को समझना है।				

इकाई।

उष्मीय व रुद्धोष्म अन्योन्य क्रियाएं:उष्मीय अन्योन्य क्रियाएं,ऊष्मागतिकी का शून्यवाँ नियम, ऊष्मा भंडार के साथ तापीय संपर्क में निकाय (विहित वितरण),ऊर्जा में उतार-चढ़ाव, तापमापी में तंत्र की एंट्रोपी, हेल्महोल्ट्ज़ मुक्त ऊर्जा, रुद्धोष्म अन्योन्य क्रियाएं और एन्थेल्पी व्यापक अन्योन्य क्रियाएं और ऊष्मागतिकी का प्रथम नियम, अनंतसुक्ष्म व्यापक अन्योन्य क्रियाएं, गिब्स मुक्त ऊर्जा, प्रावस्था परिवर्तन, त्रिक बिंदु, प्रथम और द्वितीय कोटि का प्रावस्था परिवर्तन, क्लॉसियस क्लेपेरोन समीकरण, वाष्प दाब वक्र, उत्क्रमणीय तथा अनुक्रमणीय परिवर्तन, ऊष्मा इंजन और इंजन की दक्षता, कार्नो चक्र, निरपेक्ष पैमाने के रूप में ऊष्मागतिकी पैमाना, मैक्सवेल संबंध और उनके अनुप्रयोग।

इकाई ॥

गतिज ऊर्जा सिद्धांत: वेगों के वितरण से मैक्सवेल के नियम की व्युत्पत्ति और उसका प्रायोगिक सत्यापन, अधिकतम - प्रसंभाव्य वेग, औसत वेग और वर्ग माध्य मूल वेग, विसरण ,ऊर्जा के समविभाजन का सिद्धांत। विशिष्ट ऊष्मा धारिता का चिरसम्मत सिद्धांत, ठोस की विशिष्ट ऊष्मा।

अभिगमन परिघटना: माध्य मुक्त पथ, मुक्त पथ का वितरण, श्यानता गुणांक, ऊष्मीय चालकता और विसरण। ब्राउनियन गति, लेंगेविन और आइंस्टीन के सिद्धांत, अवोगाद्रो संख्या का प्रायोगिक निर्धारण। (15 व्याख्यान)

इकाई ॥।

न्यून तापमान का उत्पादन: रुद्धोष्म प्रसार द्वारा शीतलन , निष्पादन गुणांक , जूल थॉमसन प्रभाव, आदर्श व् वांडर वाल्स गैसों के लिए ।- T गुणांक , सरंध्र डाट प्रयोग, व्युत्क्रमण ताप , पुनर्निवेशी शीतलन, वायु द्रवीकरण।

अनुचुंबिकय पदार्थों का रुद्धोष्म विचुंबकन, नाभिकीय अनुचुम्बकत्व, द्रव He । और He ॥, अतिद्रवता, निरपेक्ष शून्य की खोज, उष्मागतिकी का तीसरा नियम और नर्नस्ट ऊष्मा प्रमेय।

चिरसम्मत सांख्यिकी: चिरसम्मत सिन्नकटन की वैधता, प्रावस्था-समिष्टि,सूक्ष्म और स्थूल अवस्थाएँ, ऊष्मागितकी प्रायिकता, एन्ट्रापी और प्रायिकता, एकपरमाणुक आदर्श गैस , वायुदाब समीकरण, द्विपरमाणुक गैस की विशिष्ट ऊष्मा, ऑर्था और पैरा हाइड्रोजन, ठोसों की विशिष्ट ऊष्मा धारिता, अनुचुम्बकत्व का लैंग्विन का सिद्धांत।

(१५ व्याख्यान)

इकाई IV

कांटम सांख्यिकी: बोस-आइंस्टीन और फर्मी-डिराक वितरण नियम, न्यून अपभृष्ट गैस द्वारा उष्मागितकी फलन की गणना करना | मजबूत अधोगित ,एक आदर्श बोस गैस के उष्मागितकी प्राचल , प्लान्क नियम की व्युत्पित्त , विकिरण ऊर्जा का प्रवाह , विकिरण दाब , फर्मी इलेक्ट्रान गैस के लिए उष्मागितकी फलन , धातुओं के वर्णक्रम के लिए मुक्त इलेक्ट्रॉन गैस , तापायिनक उत्सर्जन के लिए का रिचर्डसन समीकरण, सापेक्षिकता फर्मी गैस , सफेद बौने सितारे, चंद्रशेखर द्रव्यमान सीमा। (15 व्याख्यान)

सुझाई गई पुस्तकें और संदर्भ -

- 1 किटल-धर्मल फिजिक्स।
- 2. बर्कले सीरीज, खंड V, सांख्यिकीय भौतिकी
- 3. रीफ-थर्मोडायनामिक्स और सांख्यिकीय भौतिकी।
- 4. लोकनाथन और खंडेलवाल थर्मीडायनामिक्स और सांख्यिकीय भौतिकी।
- 5. सीयर्स थर्मोडायनामिक्स, गैसों का गतिज सिद्धांत और सांख्यिकीय भौतिकी।

सुझाए गए ई-संसाधन-

1. एमआईटी ओपनकोर्सवेयर: सांख्यिकीय यांत्रिकी।: कणों के सांख्यिकीय यांत्रिकी- यह संसाधन सांख्यिकीय यांत्रिकी। पर एक पूर्ण पाठ्यक्रम के लिए व्याख्यान नोट्स, असाइनमेंट और परीक्षा प्रदान करता है, https://ocw.mit.edu/courses/8-333-statistical-mechanics-i-statistical-mechanics-of-particles-fall-2013/pages/syllabus/

पाठ्यक्रम के सीखने के परिणाम:

इस पाठ्यक्रम के अंत तक छात्रों में तापीय और सांख्यिकीय भौतिकी की गहन समझ विकसित हो जाएगी। वे सीखे गए सिद्धांतों और अवधारणाओं को ऊष्मागतिकीय निकायों (thermodynamic systems), अवस्था

परिवर्तनों (phase transitions), परिवहन परिघटनाओं (transport phenomena), निम्न-तापमान उत्पादन (low-temperature production) और क्वांटम सांख्यिकी (quantum statistics) से संबंधित समस्याओं का विश्लेषण और समाधान करने में सक्षम होंगे। साथ ही, वे ऊष्मागतिकी और सांख्यिकीय यांत्रिकी के सिद्धांतों का उपयोग करके स्थूल और सूक्ष्म प्रणालियों की विभिन्न घटनाओं और व्यवहारों की व्याख्या और स्पष्टीकरण करने में सक्षम होंगे।

पाठ्यक्रम UG0810-PHY-52P-106-भौतिकी लैब-॥

सेमेस्टर	पाठ्यक्रम का कोड	पाठ्यक्रम/पेपर का शीर्षक	NHEQF स्तर	क्रेडिट	
П	UG0810-PHY-52P-106	भौतिकी प्रायोगिक प्रयोगशाला-॥	5	4	
पाठ्यक्रम का स्तर	पाठ्यक्रम का प्रकार	पाठ्यक्रम का वितरण प्रकार			
प्रारंभिक	प्रमुख/लघु	प्रायोगिक, एक सौ बीस घंटे का प्रायोगिक, जिसमें प्रायोगिक घंटों के दौरान निदानात्मक और रचनात्मक मूल्यांकन शामिल है।			
पूर्वापेक्षाएँ	केंद्रीय माध्यमिक शिक्षा बोर्ड या समकक्ष के भौतिकी और गणित पाठ्यक्रम।				
पाठ्यक्रम के उद्देश्य	विद्युत और चुंबकत्व से संबंधित प्रयोग करने में व्यावहारिक अनुभव प्रदान करना। • विभिन्न विद्युत घटकों और उपकरणों के उपयोग में व्यावहारिक कौशल विकसित करना। • प्रयोगात्मक अनुप्रयोगों के माध्यम से संबंधित व्याख्यान पाठ्यक्रम में सीखी गई सैद्धांतिक अवधारणाओं को सुदृढ़ करना। • प्रायोगिक आंकड़ों का विश्लेषण और परिणामों की व्याख्या करके समस्या-समाधान और विश्लेषणात्मक कौशल को बढ़ाना। • वैज्ञानिक जांच, आलोचनात्मक सोच और प्रयोगों को डिजाइन और निष्पादित करने की क्षमता को बढ़ावा देना। • प्रयोग करने और परिणामों का विश्लेषण करने में टीमवर्क और सहयोग को बढ़ावा देना। • प्रायोगिक आंकडों को सटीक रूप से मापने और रिकॉर्ड करने में कौशल विकसित करना।				

कॉलेज समतुल्य मानकों के नए प्रयोग करने के लिए स्वतंत्र हैं। शैक्षणिक सत्र की शुरुआत से पहले संयोजक, अध्ययन बोर्ड द्वारा इसकी सूचना और अनुमोदन किया जाना चाहिए। कॉलेज के लिए नीचे सूचीबद्ध कम से कम दस प्रयोगों का एक प्रयोगात्मक सेट-अप रखना बाध्यकारी है। यदि छात्र द्वारा किए गए प्रयोगों की संख्या आठ से कम है, तो अंतिम परीक्षा में उसके अंकों को आनुपातिक आधार पर घटा दिया जाएगा। प्रयोगशाला परीक्षा का पेपर केंद्र में उपलब्ध आठ या अधिक प्रयोगों में से बाहरी परीक्षक द्वारा निर्धारित किया जाएगा। परीक्षा योजना-

विद्यार्थी को परीक्षा में दो प्रयोग करना आवश्यक है | परीक्षा दो दिन चलेगी | प्रत्येक दिन परीक्षा समय 4 घंटे होगा

अंक वितरण-

प्रायोगिव	7-1	प्रायोगिक-2	मौखिक	रिकॉर्ड(Record)	अधिकतम अंक
30		30	10	10	80

प्रायोगिक परीक्षा में अंक विभाजन

सिद्धांत/सूत्र	चित्र/परिपथ	अवलोकन	गणना	परिणाम/त्रुटि	सावधानियां
4	4	10	6	4	2

प्रयोगों की सूची -

- 1. प्रेरण कुंडली द्वारा फैराडे के नियम का अध्ययन करना।
- 2. डी.सी. स्रोत द्वारा दो अलग-अलग भारों द्वारा शक्ति हस्तांतरण के परिवर्तन का अध्ययन करना तथा अधिकतम शक्ति हस्तांतरण प्रमेय को सत्यापित करना।
- 3. एक अलग समय स्थिरांक (डी.सी. स्रोत का उपयोग करके) के साथ आर.सी. सर्किट में आवेश तथा धारा के परिवर्तन का अध्ययन करना।
- 4. एक शक्ति स्रोत के रूप में ए.सी. मेन्स का उपयोग करके अलग-अलग प्रतिरोध तथा धारिता वाले आर.सी. सर्किट के व्यवहार का अध्ययन करना तथा प्रतिबाधा तथा चरण संबंधों का निर्धारण करना।
- 5. स्थिर ई.एम.एफ. के स्रोत के साथ एल.आर. सर्किट में धारा के बढ़ने तथा घटने का अध्ययन करना।
- 6. एक ए.सी. शक्ति स्रोत के साथ एल.आर. सर्किट के वोल्टेज तथा धारा व्यवहार का अध्ययन करना। साथ ही शक्ति कारक, प्रतिबाधा तथा चरण संबंध निर्धारित करना।
- 7. एक धारा-वाहक वृत्ताकार कुंडली के अक्ष के साथ चुंबकीय क्षेत्र का अध्ययन करना। आवश्यक ग्राफ प्लॉट करें तथा इस प्रकार वृत्ताकार कुंडली की त्रिज्या ज्ञात करें।
- 8. LCR-सीरीज में अनुनाद का अध्ययन करना
- 9. LCR-समानांतर में अनुनाद का अध्ययन करना
- 10. कैरी फोस्टर ब्रिज का उपयोग करके किसी पदार्थ का विशिष्ट प्रतिरोध निर्धारित करना तथा दो छोटे प्रतिरोधों के बीच अंतर निर्धारित करना।
- 11. गैल्वेनोमीटर को किसी निश्चित सीमा के एमीटर में बदलना।
- 12. गैल्वेनोमीटर को किसी निश्चित सीमा के वोल्टमीटर में बदलना।
- 13. तत्वों तथा डेसॉर्म्स विधि का उपयोग करके ऊष्मागतिक स्थिरांक y (गामा) = Cp/Cv निर्धारित करना।
- 14. ली की विधि द्वारा किसी खराब चालक की ऊष्मीय चालकता निर्धारित करना।

सुझाई गई पुस्तकें और संदर्भ -

सुझाए गए ई-संसाधन।

पाठ्यक्रम के सीखने के परिणाम:

पाठ्यक्रम के अंत तक, छात्रों को निम्नलिखित में सक्षम होना चाहिए:

- 1. प्रयोगों के संचालन के लिए आवश्यक विभिन्न विद्युत घटकों और उपकरणों का उपयोग करने में दक्षता प्रदर्शित करना।
- 2. प्रयोगों को डिजाइन करने और निष्पादित करने के लिए बिजली और चुंबकत्व की सैद्धांतिक अवधारणाओं को लागू करना।
- 3. उपयुक्त गणितीय और सांख्यिकीय तकनीकों का उपयोग करके प्रयोगात्मक डेटा का विश्लेषण करना।
- 4. प्रयोगात्मक परिणामों की व्याख्या करना और डेटा विश्लेषण के आधार पर निष्कर्ष निकालना।
- 5. भौतिक मात्राओं को सटीक रूप से मापने और प्रयोगात्मक टिप्पणियों को रिकॉर्ड करने में कौशल विकसित करना।
- 6. लिखित रिपोर्टों में प्रयोगात्मक प्रक्रियाओं. परिणामों और निष्कर्षों को प्रभावी ढंग से संप्रेषित करना।

पाठ्यक्रम UG0810-PHY-63T-201- प्रकाशिकी

सेमेस्टर	पाठ्यक्रम का कोड	पाठ्यक्रम/पेपर का शीर्षक NHEQF स्तर क्रे			
III	UG0810-PHY-63T-201	प्रकाशिकी	6	4	
पाठ्यक्रम का स्तर	पाठ्यक्रम का प्रकार	पाठ्यक्रम का वितरण प्रकार			
प्रारंभिक	प्रमुख/लघु	व्याख्यान, व्याख्यान समय के दौरान निदानात्मक और रचनात्मक मूल्यांकन सहित साठ व्याख्यान।			
पूर्वापेक्षाएँ		केंद्रीय माध्यमिक शिक्षा बोर्ड या समकक्ष के भौतिकी और गणित पाठ्यक्रम।			
पाठ्यक्रम के उद्देश्य	ऑप्टिक्स बी.एससी. ऑनर्स प्रोग्राम छात्रों को ऑप्टिक्स के सिद्धांतों, सिद्धांतों और अनुप्रयोगों की व्यापक समझ प्रदान करने के लिए डिज़ाइन किया गया है। यह कार्यक्रम छात्रों को सैद्धांतिक ज्ञान और व्यावहारिक कौशल दोनों से लैस करेगा, उन्हें वैज्ञानिक अनुसंधान, उद्योग और शिक्षा में उन्नत अध्ययन और करियर के लिए तैयार करेगा।				

इकाई-। व्यतिकरण

दो बिंदु स्रोतों से तरंगों का अध्यारोपण ,प्रकाश के व्यतिकरण में ऊर्जा का संरक्षण तथा फ्रिन्जो की दृश्यता, ब्राउन और द्विंस प्रयोग, संबद्धता काल और तरंग पैकेट, दो कला सम्बध्द बिंदु स्रोतों से तरंगों का व्यतिकरण, त्रि-आयामी अंतिरक्ष में व्यतिकरण फ्रिंजों का आकार और स्क्रीन पर अवस्थिति ,आकाश में तीव्रता वितरण, फ्रेनल का व्यिप्रिज्म प्रयोग, रेडियो सिग्नलों का दिशात्मक संचरण और अभिग्रहण, आयाम के विभाजन द्वारा व्यतिकरण पतली फिल्में (समांतर तथा थानाकर आकृति से), समान झुकाव वाली फ्रिंज (हैडिंगर फ्रिंज), समान मोटाई वाले फ्रिंज (फ़िज़ो फ्रिंज)।न्यूटन वलय ; तरंगदैर्घ्य और अपवर्तनांक का मापन।माइकलसन का इंटरफेरोमीटर; फ्रिंज का आकार, तरंगदैर्घ्य और अपवर्तनांक का मापन। फैब्री-पैरेट व्यतिकरण मापी का सिद्धांत दृश्यता और फ्रिंजों का आकार, लूमर गैरहफे प्लेट; मूल सिद्धांत और कार्य, रिफ्रैक्टोमीटर की अवधारणा, जैमिन का रिफ्रैक्टोमीटर.

इकाई-॥ विवर्तन

ज़ोन प्लेट का मूल सिद्धांत, एक वृताकार द्वारक, सीधे किनारे और एक आयताकार स्लिट द्वारा फ़्रेस्नेल का विवर्तन। फ़्रेस्नेल के विवर्तन पैटर्न का अध्ययन करने के लिए कॉर्नू की सर्पिल ज्यामितीय विधि। एकल स्लिट और वृताकार द्वारक फ़्रौनहोफ़र विवर्तन। दो समानांतर स्लिट द्वारा फ़्रौनहोफ़र विवर्तन। लुप्त श्रेणियां। N समानांतर स्लिट द्वारा विवर्तन। समतल विवर्तन ग्रैटिंग। परगमित तथा परावर्तित ग्रैटिंग। अवतल ग्रैटिंग। रोलैंड माउंटिंग।। परिक्षेपण ग्रेटिंग द्वारा, रेले की विभेदन की कसौटी, ग्रेटिंग की विभेदन क्षमता, दूरदर्शी की विभेदन क्षमता, एक्स-रे विवर्तन: ब्रैग का नियम।

यूनिट-॥। लेजर और होलोग्राफी

लेजर: स्वतः उद्धिपित या प्रेरित उत्सर्जन, आइंस्टीन के A और B गुणांक। आइंस्टीन के गुणांकों के बीच संबंध, प्रेरित उत्सर्जन और अवशोषण की स्थिति, जनसंख्या व्युत्क्रमण, ऑप्टिकल पंपिंग की विधियां और He-Ne और रूबी लेजर की ऊर्जा स्तर।रूबी, He-Ne और Co₂ लेजर की क्रिया विधि। सुरंग लेजर (केवल गुणात्मक चर्चा)। होलोग्राफी की मूल अवधारणा, होलोग्राम और फोटोग्राफ के बीच अंतर। होलोग्राम का निर्माण और छवि का पुनर्निर्माण।

इकाई-। ४ ध्रुवण

समतल विद्युतचुंबकीय तरंगें और EM तरंगों की विशेषताएँ, ध्रुवीय प्रकाश और उसका गणितीय निरूपण, निर्वात परावैद्युत व्यतिकरण पर विद्युत और चुंबकीय क्षेत्रों के लिए सीमा स्थितियाँ। समतल परावैद्युत सतह पर EM तरंगों का परावर्तन और अपवर्तन सामान्य और तिरछी घटना पर। फ्रेस्नेल के संबंधों की व्युत्पत्ति। पोलरॉइड्स, त्रिविमीय फिल्मों में पोलरॉइड्स का अनुप्रयोग, द्वि अपवर्तन। कैल्साइट क्रिस्टल की ज्यामिति, साधारण और असाधारण किरणें। परावर्तन और अपवर्तन द्वारा ध्रुवीत प्रकाश का उत्पादन। द्वि अपवर्तन द्वारा ध्रुवीकरण और हागेन का सिद्धांत, निकोल प्रिज्म, वृत्ताकार और दीर्घव्रतकार रूप से ध्रुवीत प्रकाश का उत्पादन और विश्लेषण, चतुर्थांश अर्ध तरंग पट्टीका, प्रकाशिक सक्रियता, विशिष्ट घूर्णन, बाइकार्ट्ज और अर्धछाया ध्रुवणमापी।

संदर्भ:

- 1. एफ.ए. जेनकिंस और एच.ई. व्हाइट, फंडामेंटल ऑफ ऑप्टिक्स, टाटा मैकग्रॉ हिल।
- 2. ब्रिज लाल और एन. सुब्रह्मण्यम, ऑप्टिक्स, एस. चंद।
- 3. ई. हेचट, ऑप्टिक्स, पियर्सन।
- 4. ए.के. घटक, ऑप्टिक्स, टाटा मैकग्रॉ हिल।
- 5. देवराज सिंह, फंडामेंटल ऑफ ऑप्टिक्स, पीएचआई

पाठ्यक्रम उद्देश्य और परिणाम (Course Objective and Outcomes)

पाठ्यक्रम के अंत तक, छात्रों को ऑप्टिकल सिद्धांतों की पूरी समझ, ऑप्टिकल उपकरणों को संभालने में व्यावहारिक कौशल और ऑप्टिक्स में जटिल समस्याओं को हल करने के लिए अपने ज्ञान को लागू करने की क्षमता प्राप्त होगी। यह उन्हें ऑप्टिक्स से संबंधित क्षेत्रों में आगे के अध्ययन या करियर के लिए तैयार करेगा।

पाठ्यक्रम UG 0810-PHY-63T-202-गणितीय भौतिकी

सेमेस्टर	पाठ्यक्रम का कोड	पाठ्यक्रम/पेपर का शीर्षक	NHEQF स्तर	क्रेडिट	
III	UG0810-PHY-63T-202	गणितीय भौतिकी	6	4	
पाठ्यक्रम का स्तर	पाठ्यक्रम का प्रकार	पाठ्यक्रम का वितरण प्रकार			
प्रारंभिक	प्रमुख/लघु	व्याख्यान, व्याख्यान समय के दौरान निदानात्मक और रचनात्मक मूल्यांकन सहित साठ व्याख्यान।			
पूर्वापेक्षाएँ	केंद्रीय माध्यमिक शिक्षा बोर्ड या समकक्ष के भौतिकी और गणित पाठ्यक्रम।				
पाठ्यक्रम के उद्देश्य	यह पाठ्यक्रम उन्नत गणितीय विधियों की अवधारणाओं का परिचय है। इसे वे छात्र चुन सकते हैं जो पीजी में गणित पढ़ना चाहते हैं और सैद्धांतिक भौतिकी की समस्याओं से निपटने के इच्छुक हैं। इसका उद्देश्य गणित की बुनियादी अवधारणाओं, यानी वेक्टर, वेक्टर स्पेस, फूरियर और लाप्लास ट्रांसफॉर्म, और डिराक डेल्टा फ़ंक्शन, हर्मिट, लीजेंड्रे, बहुपद, आंशिक अंतर समीकरण आदि के गुणों का परिचय देना है।				

इकाई –।

लाम्बिक वक्ररेखीय निर्देश तंत्र एवं स्केल गुणांक| वृत्ताकार बेलनाकार और गोलाकार ध्रुवीय निर्देशांक में ग्रेडिएंट, डाइवर्जेंस, कर्ल के लिए व्यंजक एवं उनका अनुप्रयोग|

निर्देशांक परिवर्तन और जैकोबियन, सहचर, प्रतिपरिवर्ती और मिश्रित टेंसर का रूपांतरण, टेंसरों का जोड़, गुणा और संकुचन: मैट्रिक्स टेन्सर और इसके उपयोग टेन्सर रूपांतर में |

इकाई – ॥

फूरियर श्रेणी: फूरियर प्रमेय और फूरियर गुणांक की गणना। सम और विषम फलन, अर्ध-अन्तराल विस्तार, फलनों का योग और स्केल परिवर्तन, अधिष्ठित दोलन, विस्तार तकनीक: समाकलन और अवकलन। फूरियर रूपांतरण का परिचय और इसके सरल अनुप्रयोग।

आव्यूह: आव्यूह का व्युत्क्रम, सहखंड , हर्मिटियन सहखण्ड , आव्यूह उपयोग करके रैखिक समीकरणों का समाधान। मानक (Norms) और आंतरिक गुणनफल (inner products), लम्बवत् समुच्चय और आव्यूह , ग्राम श्मिट प्रक्रिया और क्यूआर गुणनखंड प्रमेय, प्रक्षेपण आव्यूह , आंकड़ों का न्यूनतम वर्ग समायोजन। आइगेन मान और आइगेन वेक्टर, आव्यूहों का विकर्णन। 3×3 आव्यूह के उदाहरण , वास्तविक समित और सरल आव्यूह , समांगी और असमांगी आव्यूहों का उपयोग करके दोनों प्रकार के समीकरणों के रैखिक अवकल समीकरण ज्ञात करना

इकाई – ॥।

अवकल समीकरणों का हल - श्रेणी विधि: घात श्रेणी के गुणधर्म, साधारण अवकल समीकरणों का हल: लेजेंड्रे का समीकरण, लेजेंड्रे का बहुपद और फलन, हिर्मिट बहुपद। फ्रोबेनियस विधि: एक नियमित विचित्र बिंदु, गामा फलन, बेसेल-क्लिफोर्ड समीकरण। पूर्णांक से भिन्न मूल: श्रेणी विधि, बेसेल समीकरण का हल: (i) पूर्णांक से भिन्न न होने वाली मूल (ii) समान मूल (iii) पूर्णांक से भिन्न होने वाली मूल। बेसल फलन की मूलभूत पहचान, बेसेल, हिर्मिट, लेजेंड्रे और संबद्ध लेजेंड्रे फलनों के लम्बकोणीयता संबंध और पुनरावृत्ति संबंध व मूलभूत गुण (सरल अनुप्रयोग)।

इकाई – IV

आंशिक अवकल समीकरणों का हल - चरों के पृथक्करण विधि द्वारा और निम्नलिखित सीमा मान समस्याओं पर इसका अनुप्रयोग: (i) त्रि-आयामी कार्तीय निर्देशांक प्रणाली में लाप्लास समीकरण- दो धरातल प्लेटों के बीच रेखा आवेश। (ii) गोलीय निर्देशांक प्रणाली में लाप्लास समीकरण- एक गोलीय सतह के इर्द-गिर्द विद्युत विभव (iii) द्वि-आयामी कार्तीय निर्देशांक प्रणाली में तरंग समीकरण-एक पतली आयताकार प्लेट में उष्मा चालन। (iv) बेलनाकार निर्देशांक प्रणाली में विसरण समीकरण

संदर्भ पुस्तकें:

- 1. पॉटर और गोल्डबर्ग द्वारा गणितीय विधियाँ (प्रेंटिस हॉल ऑफ़ इंडिया प्राइवेट लिमिटेड)
- 2. पाइप्स और हार्विली द्वारा इंजीनियर्स और भौतिकविदों के लिए अनुप्रयुक्त गणित (मैकग्रॉ हिल बुक कंपनी)
- 3. भौतिकविदों के लिए गणितीय विधियाँ: जी.बी. आर्फ़केन और एच.जे. वेबर
- 4. गणितीय भौतिकी: ए.के. घटक, एल.सी. गोयल और एस.जे. चुआ
- 5. गणितीय भौतिकी: पी.के. चट्टोपाध्याय

पाठ्यक्रम सीखने के परिणाम:

इस पाठ्यक्रम को पूरा करने के बाद, छात्र निम्नलिखित गणितीय तकनीकों को समझने और उनका उपयोग करने में सक्षम होंगे:

- . टेंसर और डिराक डेल्टा फलनऔर उसके गुणों के मूल गुणों को समझें।
- टेंसर और डिराक डेल्टा फलन और उसके गुणों के मूल गुणों को समझें।
- फूरियर और लाप्लास परिवर्तन की अवधारणा और गुण।
- रैखिक परिवर्तनों को आव्यूह के रूप में प्रस्तुत करें और मैट्रिसेस के मौलिक गुणों को समझें।
- आव्यूह के आइगेन मान आइगेन वेक्टर निर्धारित करें और आव्यूह को विकर्णित करें।
- ग्राम-श्मिट प्रक्रिया का उपयोग करके वेक्टर स्पेस के लिए लाम्बिक आधार निर्धारित करें।
- आंशिक अवकल समीकरण का समाधान और भौतिकी में उपयोगी आवश्यक विशेष कार्यों के गुण।

पाठ्यक्रम भौतिकी प्रायोगिक प्रयोगशाला-॥। UG0810-PHY-63P-203-भौतिकी प्रयोगशाला-॥।

सेमेस्टर	पाठ्यक्रम का कोड	पाठ्यक्रम/पेपर का शीर्षक	NHEQF स्तर	क्रेडिट		
III	UG 0810-PHY-63P -203	भौतिकी प्रायोगिक प्रयोगशाला-॥।	6	4		
पाठ्यक्रम का स्तर	पाठ्यक्रम का प्रकार	पाठ्यक्रम का वित	रण प्रकार			
प्रारंभिक	प्रमुख/लघु	प्रायोगिक, एक सौ बीस घंटे का प्रायोगिक, जिसमें प्रायोगिक घंटों के दौरान निदानात्मक और रचनात्मक मूल्यांकन शामिल है।				
पूर्वापेक्षाएँ	केंद्रीय माध्यमिक शिक्षा बोर्ड या समकक्ष के भौतिकी और गणित पाठ्यक्रम।					
पाठ्यक्रम के उद्देश्य	भौतिकी प्रयोगशाला का उद्देश्य है: 1. भौतिक घटनाओं और नियमों की जांच करना 2. सैद्धांतिक अवधारणाओं और सिद्धांतों को सत्यापित करना 3. प्रयोगात्मक तकनीक और विधियाँ विकसित करना 4. भौतिक राशियों और गुणों को मापना 5. डेटा का विश्लेषण करना और निष्कर्ष निकालना 6. परिकल्पनाओं और मॉडलों का परीक्षण करना 7. नए विचारों और तकनीकों का पता लगाना 8. भौतिक सिद्धांतों के व्यावहारिक अनुप्रयोग विकसित करना 9. छात्रों को प्रयोगात्मक विधियों और तकनीकों में प्रशिक्षित करना ये प्रयोग हमें भौतिकी के मूलभूत नियमों और हमारे दैनिक जीवन में उनके अनुप्रयोगों को बेहतर ढंग से समझने में मदद करते हैं!					

कॉलेज समतुल्य मानकों के नए प्रयोग करने के लिए स्वतंत्र हैं। शैक्षणिक सत्र की शुरुआत से पहले संयोजक, अध्ययन बोर्ड द्वारा इसकी सूचना और अनुमोदन किया जाना चाहिए। कॉलेज के लिए नीचे सूचीबद्ध कम से कम दस प्रयोगों का एक प्रयोगात्मक सेट-अप रखना बाध्यकारी है। यदि छात्र द्वारा किए गए प्रयोगों की संख्या आठ से कम है, तो अंतिम परीक्षा में उसके अंकों को आनुपातिक आधार पर घटा दिया जाएगा। प्रयोगशाला परीक्षा का पेपर केंद्र में उपलब्ध आठ या अधिक प्रयोगों में से बाहरी परीक्षक द्वारा निर्धारित किया जाएगा। परीक्षा योजना-

विद्यार्थी को परीक्षा में दो प्रयोग करना आवश्यक है | परीक्षा दो दिन चलेगी | प्रत्येक दिन परीक्षा समय 4 घंटे होगा

अंक वितरण-

प्रायोगिक-1	प्रायोगिक-2	मौखिक	रिकॉर्ड(Record)	अधिकतम अंक
30	30	10	10	80

प्रायोगिक परीक्षा में अंक विभाजन

सिद्धांत/स्	्त्र	चित्र/परिपथ	अवलोकन	गणना	परिणाम/त्रुटि	सावधानियां
4		4	10	6	4	2

प्रायोगिक सूचियाँ-

- 1. न्यूटन वलय विधि का उपयोग करके एकवर्णीय स्रोत की तरंगदैर्घ्य ज्ञात करें और द्रव का अपवर्तनांक ज्ञात करें।
- 2. प्रिज्म की परिक्षेपण शक्ति को निर्धारित करें।
- 3. ग्रेटिंग का उपयोग करके सोडियम प्रकाश की तरंगदैर्घ्य को निर्धारित करें।
- 4. फाइबर ऑप्टिक्स ट्रेनर किट का उपयोग करके प्रकाश गुणों का अध्ययन करें।
- 5. डायोड लेजर का उपयोग करके न्यूमेरिकल द्वारक का अध्ययन करें।
- 6. एंडरसन ब्रिज कॉइल द्वारा प्रेरण को मापें।
- 7. द्वि-प्रिज्म का उपयोग करके सोडियम प्रकाश की तरंगदैर्घ्य निर्धारित करें।
- 8. बैलिस्टिक गैल्वेनोमीटर के बैलिस्टिक स्थिरांक की गणना करें।
- 9. रिसाव विधि द्वारा उच्च प्रतिरोध ज्ञात करें।
- 10. डायोड लेजर का उपयोग करके सम्बद्धता स्रोत और सम्बद्धता समय का अध्ययन करें।
- 11. एयर वेज विधि का उपयोग करके वायु फिल्म के बनने का अध्ययन करना।
- 12. प्रिज्म की विभेदन क्षमता का अध्ययन करना।
- 13. ग्रेटिंग की विभेदन क्षमता का अध्ययन करना।
- 14. विपथन ग्रेटिंग का उपयोग करके रिडबर्ग स्थिरांक का अध्ययन करना।

सुझाई गई पुस्तकें और संदर्भ –

1. प्रैक्टिकल ऑप्टिक्स, एस. नफ्ताली मेन द्वारा। पहला संस्करण (आईएसबीएन 13:978-0124909519) सुझाए गए ई-संसाधन: http://msbahae.um.edu, यूनिवर्सिटी ऑफ न्यू मैक्सिको।

पाठ्यक्रम सीखने के परिणाम

1. न्यूटन वलय के बनने को खोजने और एकवर्णीय स्रोत की तरंग दैर्ध्य की गणना करने की क्षमता का विकास|

- 2. प्रिज्म के माध्यम से प्रकाश परिक्षेपण की समझ विकसित करना।
- 3. ग्रेटिंग द्वारा प्रकाश की तरंग दैर्ध्य का विश्लेषण और गणना करने में दक्षता हासिल करना ।
- 4. बैंड दांतों की ऊष्मीय चालकता निर्धारित करना सीखना ।
- 5. एंडरसन ब्रिज द्वारा प्रेरण के मान का विश्लेषण और संरचना ज्ञात करने में कौशल विकसित करना ।
- 6. तरंगाग्र विभाजन के सिद्धांत को समझना और बाइप्रिज्म द्वारा सोडियम प्रकाश की तरंग दैर्ध्य को निर्धारित करना ।
- 7. छात्रों द्वारा बैलिस्टिक गैल्वेनोमीटर की संवेदनशीलता के बारे में सीखना और बैलिस्टिक स्थिरांक का मान ज्ञात करना |

पाठ्यक्रम UG0810-PHY-64T-204-क्वांटम यांत्रिकी और स्पेक्ट्रोस्कोपी

सेमेस्टर	पाठ्यक्रम का कोड	पाठ्यक्रम/पेपर का शीर्षक	NHEQF स्तर	क्रेडिट	
IV	UG0810-PHY-64T-204	क्वांटम यांत्रिकी और स्पेक्ट्रोस्कोपी	6	4	
पाठ्यक्रम का स्तर	पाठ्यक्रम का प्रकार	पाठ्यक्रम का वितरण प्रकार			
प्रारंभिक	प्रमुख/लघु	व्याख्यान, व्याख्यान समय के दौरान निदानात्मक और रचनात्मक मूल्यांकन सहित साठ व्याख्यान।			
पूर्वापेक्षाएँ	केंद्रीय माध्यमिक शिक्षा बोर्ड या समकक्ष के भौतिकी और गणित पाठ्यक्रम।				
पाठ्यक्रम के उद्देश्य	इस कोर्स का उद्देश्य क्वांटम यांत्रिकी की बुनियादी विशेषताओं और विभिन्न भौतिक घटनाओं में इसके अनुप्रयोगों से परिचित कराना है। यह छात्रों को क्वांटम यांत्रिकी की मूल अवधारणाओं, प्रयोगों और गणितीय ढांचे का पता लगाने में मदद करेगा।				

इकाई।

क्वांटम भौतिकी का विकास

निम्न की विवेचना करने में चिरसम्मत भौतिकी की असफलता: कृष्णिका विकिरण उत्सर्जन स्पेक्ट्रम, ठोसों की विशिष्ट ऊष्मा। प्लांक का कांटा सिद्धांत और विकिरण नियम, प्रकाश विद्युत प्रभाव और आइंस्टीन की व्याख्या। कॉम्पटन प्रभाव, डी-ब्रोग्ली परिकल्पना, कण का विवर्तन और व्यतिकरण प्रयोग (डैविसन-जर्मर प्रयोग)।

अनिश्चितता सिद्धांत: स्थिति और संवेग, कोण और कोणीय संवेग, ऊर्जा और समय। अनिश्चितता सिद्धांत के अनुप्रयोग: (i) हाइड्रोजन परमाणु की मूल अवस्था ऊर्जा, (ii) सरल आवृति दोलित्र की मूल अवस्था ऊर्जा। (iii) वर्णकर्मी रेखाओं का स्वाभाविक विस्तार, (iv) नाभिक में इलेक्ट्रॉन की गैर-मौजूदगी।

संकारक: रेखीय संकारक, दो संकारकों का गुणनफल, क्रमविनिमेय और अक्रमविनिमेय संकारक। समक्षणिक आइगेन फलन एवं आइगेन मान, लाम्बिक तरंग फलन, हर्मिटी संकारक व उनके आइगेन मान। हर्मिटियन संयुग्म संकारक। आइगेन मान और आइगेन फलन; संकारकों के प्रत्याशा मान: स्थिति, संवेग, ऊर्जा; एरेनफेस्ट प्रमेय और पूरकता, समूह और कला वेग की अवधारणा, तरंग पैकिट, गाउसीयन तरंग पैकिट

इकाई ॥

श्रोडिंगर तरंग समीकरण और इसके हल

श्रीडिंगर तरंग समीकरण: तरंग संचरण का सामान्य समीकरण, द्रव्य तरंगों का संचरण, काल आश्रित और काल -अनाश्रित श्रोडिंगर समीकरण, तरंग फलन (ψ) निरूपण, ψ का भौतिक अर्थ। गुण और ψ पर शर्तें, काण्टम यांत्रिकी के मौलिक अभिगृहीत, संकारक और प्रेक्षणीय राशियाँ तथा मापन; प्रायिकता धारा घनत्व। काल -अनाश्रित श्रोडिंगर समीकरण, स्थावर अवस्था हल, एकविमीय समस्या: एकविमीय बक्से में कण, तरंग फलन और आइगेन मान, विविक्त ऊर्जा स्तर, त्रि-आयामी में सामान्यीकरण और ऊर्जा स्तरों की अपभ्रष्टता, विभव कूप और अवरोध की अभिधारणा, विभव सीढ़ी, आयताकार विभव रोधिका से विभेदन, परावर्तन और पारगमन गुणांक, विशेष आकार के विभव अवरोध (ग्राफिकल निरूपण), क्वांटम यांत्रिकी सुरंग प्रभाव (α - क्षय)।

(15 व्याख्यान)

इकाई- ॥।

विशेष अवस्थाओं में श्रोड़िनार समीकरण के हल

समित वर्गाकार विभव कूप, परावर्तन और पारगमन गुणांक, अनुनाद प्रकीर्णन, बद्ध अवस्था समस्याएं: एकविमीय अनंत विभव कूप में कण और सीमित गहराई वाले विभव कूप में कण, ऊर्जा आइगेन फलन और आइगेन मान, अबीजीय समीकरण और इसका हल; सरल आवर्ती दोलित्र। सरल आवर्ती दोलित्र के लिए श्रोडिंगर समीकरण और इसका हल, आइगेन फलन और आइगेन मान, शून्य बिंदु ऊर्जा, क्रांटम और चिरसम्मत प्रायिकता घनत्व, समता, ग्राफिकल निरूपण के साथ सममित और प्रतिसममिति तरंग फलन।

गोलीय निर्देशांकों में श्रोडिंगर समीकरण, एकल इलेक्ट्रॉन परमाणु के लिए गोलीय निर्देशांकों में श्रोड़िनार समीकरण, त्रिज्यीय और कोणीय चरों में पृथक्करण, त्रिज्यीय समीकरण और कोणीय समीकरण का हल, गोलीय हार्मोनिक्स की गुणात्मक चर्चा, श्रेणी हल, और ऊर्जा आइगेन मान, स्थायी अवस्था तरंग फलन, हाइड्रोजन परमाणु के मूल और प्रथम उत्तेजित अवस्थाओं के लिए तरंग फलन, H-परमाणु की औसत त्रिज्या, बोर संगतता सिद्धान्त, कोणीय संवेग और इसका का काण्टीकरण, क्रमविनिमेय संबंध, आइगेन फलन और आइगेन मान

(15 व्याख्यान)

इकाई -IV हाइड्रोजन परमाणु, परमाणवीय और आणविक स्पेक्ट्रोस्कोपी

हाइड्रोजन परमाणु के ऊर्जा स्तर की व्युत्पत्ति, हाइड्रोजन और हाइड्रोजन जैसी वर्णक्रम की क्वांटम विशेषताएँ, स्टर्न गार्लेक प्रयोग, इलेक्ट्रॉन प्रचक्रण, प्रचक्रण चुंबकीय आघूर्ण। प्रचक्रण -कक्षा युग्मन। सूक्ष्म संरचना की गुणात्मक व्याख्या, फ्रैंक-हर्टुज़ प्रयोग। ज़ेमान प्रभाव, सामान्य ज़ेमान विपाटन,

प्रतिनिधित्व, रूपांतरण और समरूपताएँ: क्वांटम अवस्थाएँ; अवस्था सदिश और तरंग फलन, अवस्था सदिश का हिल्बर्ट समष्टि; डिराक संकेतन-(a) अवस्था सदिश और उनके संयुग्म (b) मानक और अदिश गुणनफल (c) हिल्बर्ट समष्टि में आधार, गतिक चर और रैखिक संकारक-(a) अमूर्त संकारक; क्वांटम स्थितियाँ (b) संलग्नक; स्व-संलग्नता (c) आइगेन मान और आइगेन सदिश (d) पहचान का प्रसार; प्रक्षेपण संकारक (e) एकात्मक संकारक, प्रतिनिधित्व-(a) अवस्था सदिश का प्रतिनिधित्व: तरंग फलन (b) मैट्रिक्स संकारक के रूप में गतिक चर (c) संकारको का गुणन: क्वांटम स्थिति (d) स्व-संलग्नता और हर्मिटिसिटी (e) विकर्णीकरण, सतत आधार का श्रोडिंगर निरूपण, अपघटन; सह-अवलोकनीयों द्वारा लेबलिंग, आधार परिवर्तन; एकात्मक रूपांतरण, निर्देशांक प्रणाली में परिवर्तन से प्रेरित एकात्मक रूपांतरण: निर्देशांक प्रणाली के घुमाव से प्रेरित एकात्मक रूपांतरण, घुमाव जनरेटर का बीजगणित, गतिक चर का रूपांतरण, समरूपताएँ और संरक्षण नियम,) समष्टि व्युत्क्रमण (a) नैज समता (b) अंतरिक्ष व्युत्क्रम के यूनिटरी संकारक (c) समता गैर-संरक्षण (d) समय प्रतिलोम

(१५ व्याख्यान)

सुझाई गई पुस्तकें और संदर्भ-

- 1. ग्रिफिथ्स, क्वांटम मैकेनिक्स का परिचय, दूसरा संस्करण।
- 2. आर. शंकर, क्वांटम मैकेनिक्स के सिद्धांत, दूसरा संस्करण।
- 3. आर्थर बेज़र, आधुनिक भौतिकी का परिप्रेक्ष्य, छठा संस्करण।
- 4. ए.के. घटक और एस. लोकनाथन, क्वांटम मैकेनिक्स: सिद्धांत और अनुप्रयोग।
- 5. एच.एस. मणि, जी.के. मेहता, आधुनिक भौतिकी का परिचय।
- 6. पी.एम. मैथ्यूज और के. वेंकटेशन-क्वांटम मैकेनिक्स की एक पाठ्यपुस्तक।

सुझाए गए ई-स्रोत:

वीडियो व्याख्यान:

- [1] एमआईटी ओपनकोर्सवेयर 8.04 क्वांटम भौतिकी । https://ocw.mit.edu/courses/8-04-quantum-physics-i-spring-2016/
- [2] प्रो.वी.बालकृष्णन, भौतिकी विभाग, आईआईटी मद्रास द्वारा क्वांटम भौतिकी पर व्याख्यान श्रृंखला।

पाठ्यक्रम UG 0810-PHY-64T-205-इलेक्ट्रॉनिक्स और ठोस अवस्था युक्तियाँ

सेमेस्टर	पाठ्यक्रम का कोड	पाठ्यक्रम/पेपर का शीर्षक	NHEQF स्तर	क्रेडिट	
IV	UG0810-PHY-64T-205	इलेक्ट्रॉनिक्स और ठोस अवस्था युक्तियाँ	6	4	
पाठ्यक्रम का स्तर	पाठ्यक्रम का प्रकार	पाठ्यक्रम का वितरण प्रकार			
प्रारंभिक	प्रमुख/लघु	व्याख्यान, व्याख्यान समय के दौरान निदानात्मक और रचनात्मक मूल्यांकन सहित साठ व्याख्यान।			
पूर्वापेक्षाएँ	केंद्रीय माध्यमिक शिक्षा बोर्ड या	समकक्ष के भौतिकी और गणित पाठ्यक्रम	71		
पाठ्यक्रम के उद्देश्य	इस पाठ्यक्रम का उद्देश्य विद्यार्थियों को अर्धचालक उपकरणों और उनके इलेक्ट्रॉनिक परिपथों में उपयोग के बारे में मौलिक समझ प्रदान करना है। विद्यार्थी PN संधियों के गुण और व्यवहार की खोज करेंगे, डायोड आधारित क्लिपिंग और क्लैम्पिंग परिपथों के बारे में जानेंगे, और द्विध्रुवी संधि ट्रांजिस्टर (BJTs) के मौलिक और बायसिंग की मूल बातें समझेंगे। पाठ्यक्रम में क्षेत्र प्रभाव ट्रांजिस्टर (FETs), उनके गुण और अनुप्रयोग, और बूलियन बीजगणित, तार्किक संचालन, और डायोड-ट्रांजिस्टर तर्क (DTL) और ट्रांजिस्टर-ट्रांजिस्टर तर्क (TTL) की अवधारणाएँ शामिल हैं। यह विभिन्न प्रवर्धक विन्यास और दोलित्र के विश्लेषण और डिज़ाइन पर ध्यान केंद्रित करता है, विशेष रूप से पुनर्निवेश तंत्र और उनके प्रवर्धक प्रदर्शन पर प्रभाव को उजागर करते हुए। अंत में, पाठ्यक्रम ऑपरेशनल प्रवर्धकों में गहराई से जाता है, उनके आदर्श				

और वास्तविक गुणों, प्रमुख मापदंडों, और विभिन्न अनुप्रयोगों के लिए मूल और उन्नत विन्यास पर चर्चा करता है।

इकाई 1: डायोड और ट्रांजिस्टर

P-N संधि: N और P अर्धचालक में आवेश घनत्व; आवेश वाहकों के अपवाह और विसरण द्वारा चालकता; P-N डायोड समीकरण; धारिता प्रभाव।

क्लिपिंग और क्लैम्पिंग: श्रृंखला और समांतर डायोड क्लिपर्स, धनात्मक, ऋणात्मक और बायस्ड क्लिपर्स; धनात्मक और ऋणात्मक क्लैम्पिंग, क्लैम्पिंग परिपथों के अनुप्रयोग।

ट्रांजिस्टर मौलिकताएँ: द्विधुवी संधि ट्रांजिस्टर (BJTs) के लिए संकेतन और वोल्ट-एम्पियर विशेषताएँ; लोड लाइन और प्रचालन बिंदु की अवधारणा, संकर प्राचल; ट्रांजिस्टर अभिविन्यास: CB, CE, CC।

ट्रांजिस्टर बायसिंग: बायसिंग की आवश्यकता और Q बिंदु की स्थिरता, स्थायित्व कारक; तापीय बायस स्थिरता के लिए बायस परिपथ के प्रकार: निश्चित बायस, संग्राहक-से-आधार पुनर्निवेश बायस, और चार-प्रतिरोध बायस।

इकाई 2: FET और तार्किक संचालन

क्षेत्र प्रभाव ट्रांजिस्टर (FETs): FET का परिचय और इसके गुण/दोष, जंक्शन क्षेत्र प्रभाव ट्रांजिस्टर (JFET), मेटल-ऑक्साइड-समीकृत क्षेत्र प्रभाव ट्रांजिस्टर (MOSFET); परिपथ चिन्ह, बायसिंग, और वोल्ट-एम्पियर अभिलाक्षणिक; स्रोत अनुयायी, एक परिवर्ती वोल्टता प्रतिरोधक के रूप में FET का संचालन।

बूलियन बीजगणित और तार्किक संचालन: बूलियन बीजगणित के मौलिक सिद्धांत, बूलियन चर और कार्य, डी मॉर्गन के प्रमेय, बुनियादी तार्किक द्वार (AND, OR, NOT, NAND, NOR, XOR, XNOR), प्रतीक, सत्य सारणी, बूलियन अभिव्यक्तियाँ, डायोड-ट्रांजिस्टर तर्क (DTL) की अवधारणा और विन्यास, ट्रांजिस्टर-ट्रांजिस्टर तर्क (TTL) की अवधारणा और DTL से विकास।

इकाई 3: प्रवर्धक और दोलित्र

प्रवर्धक: संकर प्राचलों का उपयोग करके ट्रांजिस्टर प्रवर्धकों का विश्लेषण, लब्धि-आवृत्ति अनुक्रिया; बहुचरणी प्रवर्धक, प्रत्यक्ष युग्मन और R-C युग्मित प्रवर्धकों की मूल अवधारणाएं, विभेदक प्रवर्धक;

पुनर्निवेश के साथ प्रवर्धक: पुनर्निवेश की अवधारणा, धनात्मक और ऋणात्मक पुनर्निवेश, वोल्टता और धारा पुनर्निवेश परिपथ; ऋणात्मक पुनर्निवेश के लाभ: लब्धि की स्थिरीकरण, निर्गत और निवेशी प्रतिबाधा पर प्रभाव, गैर-रैखिक विरूपण में कमी, लब्धि-आवृत्ति अनुक्रिया पर प्रभाव।

दोलित्र: स्व-उत्तेजित और स्व-पोषित दोलन के लिए मानदंड, दोलनों के निर्माण के लिए परिपथीय आवश्यकताएँ; मूल ट्रांजिस्टर दोलित्र परिपथ और इसका विश्लेषण; कोलिपट्स और हार्टले दोलित्र, R.C. दोलित्र, क्रिस्टल दोलित्र और उनके लाभ।

इकाई 4: संक्रियात्मक प्रवर्धक का परिचय

संक्रियात्मक प्रवर्धक: परिचय, परिभाषा और इतिहास, संक्रियात्मक प्रवर्धकों का महत्त्व और इलेक्ट्रॉनिक परिपथों में अनुप्रयोग; आदर्श बनाम वास्तविक संक्रियात्मक प्रवर्धक: अनंत लिब्ध, अनंत निवेशी प्रतिबाधा, शून्य निर्गत प्रतिबाधा आदि।

प्रायोगिक संक्रियात्मक प्रवर्धक(Op-Amp) सीमाएँ: बैंडविड्थ, स्लीव दर, ऑफ़सेट वोल्टता, बायस धाराएँ और शोर; प्रमुख मापदंड: निवेशी ऑफ़सेट वोल्टता और धारा, सामान्य-मोड अस्वीकृति अनुपात (CMRR), ऊर्जा आपूर्ति अस्वीकृति अनुपात (PSRR), निवेशी और निर्गत प्रतिबाधा, खुला पाश लिख्य और आवृत्ति अनुक्रिया। मूल संक्रियात्मक प्रवर्धक(Op-Amp) विन्यास: इनवर्टिंग प्रवर्धक, नॉन-इनवर्टिंग प्रवर्धक, वोल्टता अनुयायी (बफर):

उन्नत संक्रियात्मक प्रवर्धक (Op-Amp) परिपथ: संकलक प्रवर्धक, अंतर प्रवर्धक, समाकलित और अवकलित प्रवर्धक, आवृत्ति अनुक्रिया और स्थिरता।

पाठ्यपुस्तकें:

- 1. "बेसिक इलेक्ट्रॉनिक्स एंड लीनियर सर्किट्स" एन.एन. भार्गव, डी.सी. कुलश्रेष्ठ, एस.सी. गुप्ता।
- 2. "इलेक्ट्रॉनिक डिवाइसेस एंड सर्किट्स" जे.बी. गुप्ता।
- 3. "सॉलिड स्टेट इलेक्ट्रॉनिक डिवाइसेस" बेन जी. स्ट्रीटमैन और संजय कुमार बनर्जी।
- "इंटीग्रेटेड इलेक्ट्रॉनिक्स: एनालॉग एंड डिजिटल सिर्केट्स" मिलमैन और हल्कियास।

संदर्भ पुस्तकें:

- 1. "सेमिकंडक्टर फिजिक्स एंड डिवाइसेस" डोनाल्ड ए. नीमेन।
- 2. "इलेक्ट्रॉनिक प्रिंसिपल्स" अल्बर्ट मालविनो और डेविड जे. बेट्स।
- 3. "डिजिटल प्रिंसिपल्स एंड एप्लिकेशन्स" डोनाल्ड पी. लीच, अल्बर्ट पॉल मालविनो, और गौतम साहा।
- 4. "डिजाइन विद ऑपरेशनल अम्प्लिफायर्स एंड एनालॉग इंटीग्रेटेड सर्किट्स" सर्जियो फ्रेंको।

ई-संसाधनः

- 1. एनपीटीईएल (राष्ट्रीय प्रौद्योगिकी सुधारित अध्ययन कार्यक्रम): वेबसाइट: https://nptel.ac.in/courses
- 2. MIT खुला पार्ठ्य पदार्थ : वेंबसाइट: https://ocw.mit.edu/courses/6-002-circuits-and-electronics-spring-2007/video_galleries/video-lectures/
- 3. Coursera: वेबसाइट: Coursera इलेक्ट्रॉनिक्स कोर्सेस
- 4. edX: इलेक्ट्रॉनिक्स कोर्सेस वेबसाइट: https://www.edx.org/learn/electronics
- 5. IEEE Xplore डिजिटल पुस्तकालयः वेबसाइटः IEEE Xplore डिजिटल पुस्तकालय

सीखने के परिणाम:

पाठ्यक्रम पूरा करने पर, विद्यार्थी PN संधियों के गुण और व्यवहार को समझने, क्लिपिंग और क्लैम्पिंग परिपथों का विश्लेषण करने, और द्विध्रुवी संधि ट्रांजिस्टर (BJTs) और उनकी बायसिंग तकनीकों को समझने में सक्षम होंगे। वे क्षेत्र प्रभाव ट्रांजिस्टर (FETs), JFETs और MOSFETs का ज्ञान प्राप्त करेंगे, और बूलियन बीजगणित और तार्किक द्वारों का अन्वेषण करेंगे। विद्यार्थी ट्रांजिस्टर प्रवर्धकों का विश्लेषण करने, पुनर्निवेश तंत्र को समझने, और विभिन्न दोलित्र परिपथों का अध्ययन करने में सक्षम होंगे। इसके अतिरिक्त, वे संक्रियात्मक प्रवर्धकों, उनके प्रमुख मापदंडों, और बुनियादी और उन्नत प्रवर्धक विन्यासों को रचना और विश्लेषण करने में सक्षम होंगे, जिससे उनकी इलेक्ट्रॉनिक परिपथों को रचना और विश्लेषण करने की क्षमता में वृद्धि होगी।

पाठ्यक्रम UG 0810-PHY-64P -206- भौतिकी प्रायोगिक प्रयोगशाला-IV

सेमेस्टर	पाठ्यक्रम का कोड	पाठ्यक्रम/पेपर का शीर्षक	NHEQF स्तर	क्रेडिट	
IV	UG 0810-PHY-64P -206	भौतिकी प्रायोगिक प्रयोगशाला-।v	6	4	
पाठ्यक्रम का स्तर	पाठ्यक्रम का प्रकार	पाठ्यक्रम का वितरण प्रकार			
प्रारंभिक	प्रमुख/लघु	प्रायोगिक, एक सौ बीस घंटे का प्रायोगिक, जिसमें प्रायोगिक घंटों के दौरान निदानात्मक और रचनात्मक मूल्यांकन शामिल है।			
पूर्वापेक्षाएँ	केंद्रीय माध्यमिक शिक्षा बोर्ड या समकक्ष के भौतिकी और गणित पाठ्यक्रम।				

	भौतिकी प्रयोगशाला का उद्देश्य है:
	1. भौतिक घटनाओं और नियमों की जांच करना
	2. सैद्धांतिक अवधारणाओं और सिद्धांतों को सत्यापित करना
	3. प्रयोगात्मक तकनीक और विधियाँ विकसित करना
	4. भौतिक राशियों और गुणों को मापना
पाठ्यक्रम के	 डेटा का विश्लेषण करना और निष्कर्ष निकालना
उद्देश्य	6. परिकल्पनाओं और मॉडलों का परीक्षण करना
	7. नए विचारों और तकनीकों का पता लगाना
	8. भौतिक सिद्धांतों के व्यावहारिक अनुप्रयोग विकसित करना
	9. छात्रों को प्रयोगात्मक विधियों और तकनीकों में प्रशिक्षित करना
	ये प्रयोग हमें भौतिकी के मूलभूत नियमों और हमारे दैनिक जीवन में उनके अनुप्रयोगों को बेहतर ढंग से
	समझने में मदद करते हैं!

कॉलेज समतुल्य मानकों के नए प्रयोग करने के लिए स्वतंत्र हैं। शैक्षणिक सत्र की शुरुआत से पहले संयोजक, अध्ययन बोर्ड द्वारा इसकी सूचना और अनुमोदन किया जाना चाहिए। कॉलेज के लिए नीचे सूचीबद्ध कम से कम दस प्रयोगों का एक प्रयोगात्मक सेट-अप रखना बाध्यकारी है। यदि छात्र द्वारा किए गए प्रयोगों की संख्या आठ से कम है, तो अंतिम परीक्षा में उसके अंकों को आनुपातिक आधार पर घटा दिया जाएगा। प्रयोगशाला परीक्षा का पेपर केंद्र में उपलब्ध आठ या अधिक प्रयोगों में से बाहरी परीक्षक द्वारा निर्धारित किया जाएगा। परीक्षा योजना-

विद्यार्थी को परीक्षा में दो प्रयोग करना आवश्यक है | परीक्षा दो दिन चलेगी | प्रत्येक दिन परीक्षा समय 4 घंटे होगा

अंक वितरण-

प्रायोगिक-1	प्रायोगिक-2	मौखिक	रिकॉर्ड(Record)	अधिकतम अंक
30	30	10	10	80

प्रायोगिक परीक्षा में अंक विभाजन

सिद्धांत/सूत्र	चित्र/परिपथ	अवलोकन	गणना	परिणाम/त्रुटि	सावधानियां
4	4	10	6	4	2

प्रयोगों की सूची

- [1] प्लैटिनम प्रतिरोध थर्मामीटर का उपयोग करके किसी दिए गए पदार्थ का गलनांक ज्ञात करना।
- [2] रिसाव विधि द्वारा बैलिस्टिक गैल्वनोमीटर के बैलिस्टिक स्थिरांक का निर्धारण।
- [3] तापमान के साथ कुल तापीय विकिरण के परिवर्तन का अध्ययन।
- [4] खोखले धातु सिलेंडर में चुंबक के गिरने के माध्यम से चालक संपर्क का अध्ययन करना।
- [5] कठोरता के मापांक के तापमान भिन्नता का अध्ययन करना।

- [6] थर्मो emf बनाम तापमान ग्राफ बनाएं और निक्रोम और स्नान का उपयोग करके उदासीन तापमान ज्ञात करें।
- [7] विभिन्न फिल्टर सर्किटों के साथ आधे तरंग, पूर्ण तरंग और ब्रिज रेक्टिफायर का उपयोग करके बिजली आपूर्ति का अध्ययन।
- [8] एकल डायोड का उपयोग करके आधे तरंग दिष्टकारी का अध्ययन और L और C सेक्शन फिल्टर का अनुप्रयोग।
- [9] थॉमसन विधि द्वारा emf निर्धारित करना।
- [10] दिए गए ट्रांजिस्टर (PNP/NPN) के लक्षणों का अध्ययन करें, जो कॉमन एमिटर, कॉमन बेस और कॉमन कलेक्टर विन्यास में हों।
- [11] जंक्शन डायोड का उपयोग करके सेमीकंडक्टर के बैंड गैप को निर्धारित करें।
- [12] चार-प्रोब विधि का उपयोग करके सेमीकंडक्टर में प्रतिरोध के तापमान निर्भरता का अध्ययन करें।
- [13] जंक्शन डायोड और जेनर डायोड के अभिलक्षणों का अध्ययन करें।
- [14] क्षेत्र प्रभाव ट्रांजिस्टर (FET) के अभिलक्षणों का अध्ययन करें
- [15] ट्रांजिस्टर एम्पलीफायर की आवृत्ति प्रतिक्रिया का अध्ययन करें और इनपुट और आउटपुट प्रतिबाधा प्राप्त करें।
- [16] R-C फेज शिफ्ट ऑसिलेटर डिजाइन करें और उसका अध्ययन करें और आउटपुट प्रतिबाधा (R और C घटकों के परिवर्तन के साथ आवृत्ति प्रतिक्रिया) को मापें।
- [17] AC से उच्च वोल्टेज DC उत्पन्न करने के लिए वोल्टेज गुणक सर्किट का अध्ययन करें।
- [18] असतत घटकों का उपयोग करके OR, AND, और NOT लॉजिक गेटों का अध्ययन करें और उनकी तुलना TTL इंटीग्रेटेड सर्किट (ICs) से करें।
- [19] डायोड का उपयोग करके विभिन्न प्रकार के क्लिपिंग और क्लैंपिंग सर्किट के व्यवहार का विश्लेषण करें।
- [20] एम्पलीफायर के प्रदर्शन पर नकारात्मक प्रतिक्रिया के प्रभाव की जांच करें।
- [21] इनटेग्रेटर और डिफरेंशिएटर सर्किट का निर्माण और विश्लेषण करें, इनपुट संकेतों और आवृत्ति प्रतिक्रिया के लिए उनकी प्रतिक्रिया का मूल्यांकन करें।
- [22] फोटोइलेक्ट्रिक सेल और डायरेक्ट रीडिंग पोटेंशियोमीटर का उपयोग करके प्लैंक का स्थिरांक 'h' निर्धारित करना।

संदर्भ पुस्तकें:

- 1. रॉबर्ट एल. बॉयलस्टेड और लुइस नैशेल्स्की द्वारा "इलेक्ट्रॉनिक डिवाइस और सर्किट थ्योरी"
- 2. एडेल एस. सेड्रा और केनेथ सी. स्मिथ द्वारा "माइक्रोइलेक्ट्रॉनिक सर्किट"
- 3. बेन जी. स्ट्रीटमैन और संजय कुमार बनर्जी द्वारा "सॉलिड स्टेट इलेक्ट्रॉनिक डिवाइस"
- 4. पॉल होरोविट्ज़ और विनफील्ड हिल द्वारा "द आर्ट ऑफ़ इलेक्ट्रॉनिक्स"
- 5. अल्बर्ट माल्विनो और डेविड बेट्स द्वारा "इलेक्ट्रॉनिक सिद्धांत"
- 6. डेविड ए. बेल द्वारा "इलेक्ट्रॉनिक डिवाइस और सर्किट"
- 7. डेनिस एल. एग्लस्टन द्वारा "वैज्ञानिकों और इंजीनियरों के लिए बुनियादी इलेक्ट्रॉनिक्स"
- 8. अनंत अग्रवाल और जेफ़री एच. लैंग द्वारा "एनालॉग और डिजिटल इलेक्ट्रॉनिक सर्किट की नींव"
- 9. डेविड ए. बेल द्वारा "इलेक्ट्रॉनिक इंस्ट्रमेंटेशन और माप"
- 10. रॉबर्ट एफ. कॉफ़लिन और फ्रेडरिक एफ. ड्रिस्कॉल द्वारा "ऑपरेशनल एम्पलीफायर और लीनियर इंटीग्रेटेड सर्किट"इलेक्ट्रॉनिक्स

पाठ्यक्रम के सीखने के परिणाम (Learning Outcomes)

यह पाठ्यक्रम इलेक्ट्रॉनिक्स के क्षेत्र में छात्रों का कौशल विकास करने, उनकी विश्लेषणात्मक क्षमता को बढ़ाने और उन्हें वास्तविक दुनिया के अनुप्रयोगों और इलेक्ट्रॉनिक ठोस अवस्था युक्तियों (Electronic solid state devices) के क्षेत्र में आगे की पढ़ाई के लिए तैयार करने का लक्ष्य रखता है। पाठ्यक्रम के अंतर्गत छात्र निम्नलिखित क्षेत्रों में दक्षता हासिल करेंगे:

ट्रांजिस्टर की विशेषताएँ (Transistor Characteristics): ट्रांजिस्टर के व्यवहार का विश्लेषण और व्याख्या करने की क्षमता, कॉमन एमिटर, कॉमन बेस और कॉमन कलेक्टर विन्यासों (configurations) में।

अर्धचालक विश्लेषण (Semiconductor Analysis): जंक्शन डायोड का उपयोग करके अर्धचालक पदार्थों के बैंड गैप (band gaps) निर्धारित करने और प्रतिरोध के तापमान निर्भरता (temperature dependence) को समझने का कौशल।

आवर्धक (Amplifier) डिजाइन और विश्लेषण (Design and Analysis): ट्रांजिस्टर और फील्ड इफेक्ट ट्रांजिस्टर (FET) आधारित आवर्धकों को डिजाइन और उनका मूल्यांकन करने की दक्षता, जिसमें लाभ-आवृत्ति प्रतिक्रिया (gain-frequency response) और इनपुट/आउटपुट प्रतिबाधा (impedance) शामिल हैं।

डायोड की विशेषताएँ (Diode Characteristics): जंक्शन डायोड और जेनर डायोड सहित डायोड के व्यवहार और सर्किट में उनके अनुप्रयोगों को समझना।

विद्युत आपूर्ति और दिष्टकारी परिपथ (Power Supply and Rectifier Circuits): दिष्टकारी और फिल्टर परिपथों सिहत विद्युत आपूर्ति परिपथों को डिजाइन और उनका विश्लेषण करने में दक्षता।

दोलित्र डिजाइन (Oscillator Design): आवृत्ति स्थिरता (frequency stability) और तरंग विश्लेषण (waveform analysis) के लिए R-C फेज शिफ्ट, हार्टले और कोल्पिट्स दोलित्रों को डिजाइन और उनका मूल्यांकन करने की क्षमता।

फीडबैक और ऑपरेशनल एम्प्लिफायर (Feedback and Operational Amplifiers): निगेटिव फीडबैक के एम्प्लिफायर प्रदर्शन पर प्रभाव का विश्लेषण करना और ऑपरेशनल एम्प्लिफायर के प्रमुख मापदंडों को मापना।

लॉजिक गेट और क्लिपिंग/क्लैंपिंग परिपथ (Logic Gates and Clipping/Clamping Circuits): असतत घटकों और टीटीएल आईसी (TTL ICs) का उपयोग करके लॉजिक गेटों को समझना, और डायोड का उपयोग करके क्लिपिंग और क्लैंपिंग परिपथों का विश्लेषण करना।

योग और अवकल एम्प्लिफायर (Summing and Differential Amplifiers): योग और अवकल एम्प्लिफायर परिपथों को डिजाइन और उनका विश्लेषण करने, सीएमआरआर (CMRR) और आउटपुट विशेषताओं को मापने में कौशल।

इंटीग्रेटर और डिफरेंशिएटर परिपथ (Integrator and Differentiator Circuits): इंटीग्रेटर और डिफरेंशिएटर परिपथों का निर्माण और मूल्यांकन करने, इनपुट संकेतों और आवृत्ति विशेषताओं के प्रति उनकी प्रतिक्रिया का आकलन करने में दक्षता।

ऑप-एम्प आवृत्ति प्रतिक्रिया और स्थिरता (Op-Amp Frequency Response and Stability): ऑपरेशनल एम्प्लिफायर परिपथों की आवृत्ति प्रतिक्रिया, कटऑफ आवृत्तियाँ (cutoff frequencies), लाभ-बैंडविड्थ उत्पाद (gain-bandwidth product), फेज मार्जिन (phase margin) और गेन मार्जिन (gain margin) को समझना।

पाठ्यक्रम UG 0810-PHY-75T-301- प्रारंभिक नाभिकीय और कण भौतिकी

सेमेस्टर	पाठ्यक्रम का कोड	पाठ्यक्रम/पेपर का शीर्षक NHEQF स्तर क्रेरि				
V	UG 0810-PHY-75T-301	प्रारंभिक नाभिकीय और कण भौतिकी ₇				
पाठ्यक्रम का स्तर	पाठ्यक्रम का प्रकार	पाठ्यक्रम का वितरण प्रकार				
प्रारंभिक	प्रमुख/लघु	व्याख्यान, व्याख्यान समय के दौरान निदानात्मक और रचनात्मक मूल्यांकन सहित साठ व्याख्यान।				
पूर्वापेक्षाएँ		र्ड या समकक्ष के भौतिकी और गणित पाठ्यक्रम।				
पाठ्यक्रम के उद्देश्य	इस पाठ्यक्रम का उद्देश्य छात्रों को नाभिकीय भौतिकी और कण भौतिकी की व्यापक समझ प्रदान करना है। पाठ्यक्रम का उद्देश्य नाभिक के गुण, नाभिकीय बल, विभिन्न नाभिकीय मॉडल, रेडियोधर्मी क्षय, नाभिकीय विखंडन और संलयन, नाभिकीय अभिक्रियाएँ, भारी आवेशित कणों और गामा किरणों का पदाथ के साथ अंतःक्रिया, विकिरण डिटेक्टर, मूलभूत कण, और कण त्वरकों पर ध्यान केंद्रित करना है।			Γ,		

इकाई।: मूलभूत नाभिकीय विशेषताएँ

नाभिक की मूलभूत विशेषताएँ: नाभिकीय द्रव्यमान, नाभिकीय आकार और नाभिकीय पदार्थ - द्रव्यमान तालिका, न्यूक्लियॉनों की बंधन ऊर्जा, अर्ध-प्रायोगिक द्रव्यमान सूत्र, नाभिकीय पदार्थ की विशेषताएँ, बंधन ऊर्जा का सिद्धांत और युग्मन ऊर्जा, नाभिकीय स्थिरता और न्यूक्लाइड्स की प्रचुरता, नाभिकीय अवस्थाओं का स्पिन और पैरिटी, नाभिक का चुंबकीय द्विध्रुवीय और विद्युत चतुर्ध्रुवीय आघूर्ण।

न्यूक्लियॉनों के बीच बल की सामान्य प्रकृति: युकावा मेसॉन सिद्धांत, नाभिकीय विभव, अल्प ऊर्जा पर प्रोटॉनों द्वारा न्यूट्रॉनों का प्रकीर्णन, द्वि - न्यूक्लियॉन प्रणाली, ड्यूट्रॉन का चुंबकीय द्विध्रुवीय और विद्युत चतुर्ध्रुवीय आघूर्ण, अकेंद्रीय बल, अल्प ऊर्जा पर प्रोटॉन-प्रोटॉन (p-p) और न्यूट्रॉन-न्यूट्रॉन (n-n) प्रकीर्णन, नाभिकीय बलों की आवेश स्वतंत्रता और आइसो-स्पिन अपरिवर्तनीयता की अवधारणा।

इकाई ॥: नाभिकीय मॉडल, विखंडन और संलयन, और अंतःक्रियाएँ

नाभिकीय गुणों की नियमितता के लिए प्रायोगिक प्रमाण: नाभिकीय द्रव्यमान और बंधन ऊर्जा, मैजिक संख्याएँ। द्रव- बूँद मॉडल, फर्मी गैस मॉडल, नाभिकीय शैल संरचना के प्रमाण, शैल मॉडल की मूल धारणाएँ, एकल कण शैल मॉडल, औसत शैल मॉडल विभव।

विखंडन: विखंडन की खोज, विखंडन का सिद्धांत, मुक्त ऊर्जा, एक रिएक्टर की क्रांतिकता और चतु: गुणांक सूत्र, ईंधनों के प्रकार और रिएक्टरों के प्रकार, ब्रीडर रिएक्टर, एक तापीय नाभिकीय रिएक्टर में न्यूट्रॉन चक्र। नाभिकीय संलयन, नाभिकीय संलयन में मुक्त ऊर्जा, तारों में संलयन।

इकाई ।।।: नाभिकीय विकिरण की अंतःक्रिया, पहचान और त्वरण

Dy. Registrar
(Academic)
University of Rajasthan
JAIPUR 3

39

नाभिकीय विकिरण की अंतःक्रिया: आवेशित कण का पदार्थ से पारगमन, टक्कर के कारण ऊर्जा हास, विकिरण प्रक्रिया द्वारा ऊर्जा हास, परास-ऊर्जा वक्र, परास स्ट्रगलिंग, भारी आयनों की रोक शक्ति, गामा किरण अंतःक्रिया के लिए अवशोषण का नियम, फोटो इलेक्ट्रिक प्रभाव, कॉम्पटन प्रकीर्णन, युग्म उत्पादन।

विकिरण संसुचक: संचालन के प्रकार - धारा मोड और पत्स मोड, गैसीय संसुचक - आयनन प्रकोष्ट, आनुपातिक काउंटर, गीगर-मुलर काउंटर, सिंटिलेटर संसुचक - कार्बनिक और अकार्बनिक सिंटिलेशन संसुचक।

कण त्वरण: आयन स्रोत, वैन-डी-ग्राफ त्वरणक (टैंडम त्वरणक), रैखिक त्वरणक, साइक्लोट्रॉन, सिंक्रोसाइक्लोट्रॉन, बीटाट्रॉन, प्रोटॉन सिंक्रोट्रॉन।

डकाई IV: कणों का परिचय और संरक्षण नियम

कणों का परिचय: इलेक्ट्रॉन, अल्फा कण, फोटॉन, पोजीट्रॉन, न्यूट्रॉन, न्यूट्रिनो और म्यूऑन का परिचय। बैरियॉन और लेप्टॉन। पायन की खोज और इसकी विशेषताएँ, डेल्टा, स्ट्रेंजनेस और काओन आदि, लैम्ब्डा और अन्य हाइपरॉन। आवेश संयुग्मन, अंतरिक्ष समता और गेलमैन-निशिजिमा योजना का परिचय। पैट्रॉन, कार्क मॉडल कार्क और ग्लूऑन, बैरियॉन और मेसॉन का कार्क संघटन, Ј/ψ कण, W और Z कण, और हिग्स। कणों और प्रतिध्वनियों का परिचय देते समय प्रायोगिक खोजों और संरक्षण नियमों पर जोर दिया जाना चाहिए। एस यू (3) सममिति का परिचय।

संदर्भ पुस्तकें:

- 1. न्युक्लियर एंड पार्टिकल फिजिक्स, डब्ल्यू.ई. बर्चम और एम. जॉब्स, एडिसन वेस्ले लॉनामैन इंक.
- 2. न्युक्लियर एंड पार्टिकल फिजिक्स, ब्रायन आर मार्टिन, जॉन विली एंड संस.
- 3. न्यूंक्लियर एंड पार्टिकल फिजिक्स का परिचय, दास एंड फेरबल, वर्ल्ड साइंटिफिक.
- 4. न्यूक्लियर फिजिक्स के तत्व, वाल्टर ई. मेयरहोफ, मैकग्रॉ-हिल बुक कंपनी.
- 5. इंट्रोडक्टरी न्यूक्लियर फिजिक्स, केनेथ एस. क्रेन, जॉन विली एंड संस.
- 6. एलिमेंट्री पार्टिकल्स का परिचय, डेविड जे. ग्रिफिथ्स, जॉन विली एंड संस.
- 7. रेडिएशन डिटेक्शन एंड मेजरमेंट, जी.एफ. नोल (जॉन विली एंड संस).
- 8. न्यूक्लियर एंड पार्टिकल फिजिक्स का परिचय, वी.के. मित्तल, आर.सी. वर्मा, एस.सी. गुप्ता, पीएचआई.
- 9. मॉंडर्न फिज़िक्स की अवधारणाएँ, ए. बेज़र, मैकग्रॉ-हिल बुक् कंपनी.
- 10. हाई एनर्जी फिजिक्स का परिचय, डोनाल्ड एच. पर्किन्स, चौथा संस्करण, कॉम्ब्रिज यूनिवर्सिटी प्रेस।

सुझाए गए ई-संसाधन:

- 1. https://archive.nptel.ac.in/courses/115/104/115104043/
- 2.https://ocw.mit.edu/cources/22-101-applied-nuclear-physics-fall-2006/pages/lecture-notes/

पाठ्यक्रम सीखने के परिणाम:

पाठ्यक्रम समाप्ति पर, छात्र सक्षम होंगे:

- 1. नाभिकीय बलों की प्रकृति और न्यूक्लियॉनों को एक साथ बांधने में उनकी भूमिका पर चर्चा करना।
- 2. नाभिकीय द्रव्यमान और बंधन ऊर्जा का मूल्यांकन करने के लिए अर्ध-प्रायोगिक द्रव्यमान सूत्र का उपयोग करना और नाभिकीय स्पिन, पैरिटी, और चुंबकीय द्विध्रुवीय आघूर्ण जैसे अवधारणाओं को समझना।

- 3. नाभिकीय संरचना और व्यवहार को समझाने के लिए तरल बूँद मॉडल, खोल मॉडल, और फर्मी गैस मॉडल जैसे मॉडलों का वर्णन और तुलना करना।
- 4. जादुई संख्याओं के महत्व और उनके नाभिकीय स्थिरता पर प्रभाव को समझना।
- 5. नाभिकीय विखंडन और संलयन से संबंधित तंत्रों और ऊर्जा विमोचन को समझाना।
- 6. ऊर्जा उत्पादन और तारकीय प्रक्रियाओं में विखंडन और संलयन के उपयोग का वर्णन करना।
- 7. नाभिकीय अभिक्रिया प्रकार, संरक्षण नियम, अभिक्रिया काइनेमैटिक्स, क्यू-वैल्यू, और अभिक्रिया दर को समझना।
- 8. अल्फा, बीटा, और गामा क्षय प्रक्रियाओं का वर्णन करना, जिसमें ऊर्जा वर्णक्रम और क्षय नियम शामिल हैं।
- 9. भारी आवेशित कणों और गामा किरणों का पदार्थ के साथ अंतःक्रिया कैसे करती है, इसमें ऊर्जा हानि, टकराव, और अवशोषण का विश्लेषण करना।
- 10.मुख्य विकिरण अंतःक्रिया प्रक्रियाओं के रूप में फोटोइलेक्ट्रिक प्रभाव, कॉम्पटन स्कैटरिंग, और जोड़ी उत्पादन पर चर्चा करना।
- 11.विभिन्न विकिरण डिटेक्टरों, जैसे गैस-भरे डिटेक्टर, आयनीकरण चैंबर, प्रोपोर्शनल काउंटर, और गाइगर-मुलर काउंटर के संचालन और सिद्धांतों को समझाना।
- 12.विभिन्न संदर्भों में विकिरण को मापने और विश्लेषण करने के लिए विकिरण डिटेक्टरों का उपयोग करना, जिसमें प्रयोगात्मक और व्यावहारिक अनुप्रयोग शामिल हैं।
- 13.कण त्वरकों के कार्य और प्रकारों को समझाना, जैसे वैन-डी-ग्राफ त्वरक, रैखिक त्वरक, साइक्लोट्रॉन, सिंक्रोसाइक्लोट्रॉन, बेटाट्रॉन, और प्रोटॉन सिंक्रोट्रॉन।
- 14.मानक मॉडल के भीतर मौलिक कणों को पहचानना और उनकी अंतःक्रियाओं और ऐतिहासिक खोज का वर्णन करना।
- 15.कण अभिक्रियाओं और प्रक्रियाओं में सममितियों और संरक्षण नियमों (C, P, और T अपरिवर्तनीयता) को समझना और लागू करना।
- 16.क्वार्क और ग्लूऑनों की भूमिका, स्वाद समिमतियों, गैलमैन-निशिजिमा सूत्र, आठ गुना पथ पर चर्चा करना।

Dy. Registrar
(Academic)
University of Rajasthan
JAIPUR

पाठ्यक्रम सेमेस्टर-V UG 0810-PHY-75T-302-संख्यात्मक विधियाँ और कंप्यूटर प्रोग्रामिंग

सेमेस्टर	पाठ्यक्रम का कोड	पाठ्यक्रम/पेपर का शीर्षक	NHEQF स्तर	क्रेडिट	
V	UG 0810-PHY-75T-302	संख्यात्मक विधियाँ और कंप्यूटर प्रोग्रामिंग	7	4	
पाठ्यक्रम का स्तर	पाठ्यक्रम का प्रकार	पाठ्यक्रम का वितरण प्रकार			
प्रारंभिक	प्रमुख/लघु	व्याख्यान, व्याख्यान समय के दौरान निदानात्मक और रचनात्मक मूल्यांकन सहित साठ व्याख्यान।			
पूर्वापेक्षाएँ	केंद्रीय माध्यमिक शिक्षा बोर्ड या	रु शिक्षा बोर्ड या समकक्ष के भौतिकी और गणित पाठ्यक्रम।			
पाठ्यक्रम के उद्देश्य	इस कोर्स का उद्देश्य छात्रों को सी भाषाओं में संख्यात्मक विधियों और कंप्यूटर प्रोग्रामिंग की व्यापक समझ प्रदान करना है। इस कोर्स का उद्देश्य वैज्ञानिक और इंजीनियरिंग विषयों में जटिल डेटासेट को संसाधित करने और उनका विश्लेषण करने के लिए कुछ कुशल एल्गोरिदम विकसित करना है।			टासेट को	

इकाई – ।

एलोरिदम विस्तारः समस्या विश्लेषण, प्रवाह तालिका (फ्लो चार्ट), निर्णय तालिकाएँ; सरल एलोरिदम के उदाहरण, प्रोग्राम डिज़ाइनः डिबिगिंग सिंटैक्स त्रुटि, रन-टाइम त्रुटि, तार्किक त्रुटि, प्रोग्राम सत्यापन और परीक्षण। डेटा निरूपणः सकारात्मक और नकारात्मक संख्याओं का निरूपणः, निश्चित बिंदु निरूपणः, फ़्लोटिंग पॉइंट निरूपणः, प्रसामान्यीकृत फ़्लोटिंग-पॉइंट संख्याएँ और इसके परिणामों के साथ अंकगणितीय संक्रियाः, वर्ण निरूपणः, किसी संख्या का सन्निकटनः, पूर्ण एवं सापेक्ष त्रुटियाँ, त्रुटि का संसूचन और त्रुटि संशोधन कोड।

इकाई – ॥

C भाषा में प्रोग्रामिंग

संख्यात्मक स्थिरांक, चर नाम घोषित करना, वर्ण डेटा प्रकार; अंकगणितीय ऑपरेटर, संचालन का पदानुक्रम, असाइनमेंट स्टेटमेंट, इनपुट/आउटपुट स्टेटमेंट; लाइब्रेरी फ़ंक्शन, अंकीय और स्ट्रिंग प्रोसेसिंग के लिए C में प्राथमिक प्रोग्राम।

सशर्त कथन: संबंधपरक संकारक; अंकगणितीय IF और तार्किक IF कथन; अप्रतिबंधित स्थानांतरण: GO TO कथन; लूपिंग: DO लूप, नेस्टेड लूप, फ़ंक्शन और प्रक्रिया; अधोलिखित चर (सबस्क्रिप्टेड वैरिएबल): वेक्टर और एरे: C में प्रोग्राम लिखना और निष्पादित करना।

C भाषा में प्रोग्रामिंग

(i) एक धारा ले जाने वाली कुंडली के कारण चुंबकीय क्षेत्र की गणना करना (ii) बिंदु आवेशों के एक निकाय के कारण विद्युत क्षेत्र की गणना करना (iii) एक LCR परिपथ की आवृत्ति प्रतिक्रिया का अध्ययन करना (iv) श्रेणी प्रसार (श्रृंखला विस्तार) द्वारा बेसल फ़ंक्शन, लीजेंड्रे फ़ंक्शन, हर्माइट बहुपद, लेगुएरे बहुपद का टेलर श्रृंखला विस्तार द्वारा मूल्यांकन करना, टेलर श्रृंखला विस्तार द्वारा सरल फलनो का मूल्यांकन करना।

डकाई – ॥

पुनरावृत्त विधियाँ: द्विभाजन विधि, कृत्रिम स्थिति विधि, न्यूटन-राफसन विधि, मिश्रित शून्य, बहुपद के शून्यक का उपयोग करके बीजगणितीय और ट्रान्सेंडैंटल समीकरणों का हल (समाधान); भौतिकी से संबंधित सरल अनुप्रयोग जैसे कि सरल फलनों के शून्यांक का मूल्यांकन करने के लिए C में प्रोग्राम।

अंतर्वेशन (प्रक्षेपण): लैग्रेंज अंतर्वेशन, अंतर सारणी, अंतर्वेशन में ट्रंकेशन त्रुटि, स्प्लाइन इंटरपोलेशन।

इकाई - IV

न्यूनतम वर्ग सन्निकटन, रैखिक प्रतिगमन, बहुपद प्रतिगमन, घातांकीय और त्रिकोणमितीय फलनों को प्रस्तुत करना, टेलर श्रृंखला और चेबीशेव बहुपदों द्वारा फलनों का सादृश्य (सन्निकटन), वक्र फिटिंग और बहुपद फिटिंग: उपरोक्त विषयों पर भौतिकी से संबंधित C में प्रोग्राम।

संख्यात्मक समाकलन (एकीकरण): ट्रेपीजियम नियम, सिम्पसन नियम, समाकलन सूत्रों में त्रुटियाँ, गाँउसियन चतुर्भुज नियम, उपरोक्त विषयों पर भौतिकी से संबंधित C में प्रोग्राम।

(i) विंसरण समीकरण (ii) तरंग समीकरण और (iii) लाप्लास समीकरण के समाधान के लिए अवकलज विधियाँ; उपरोक्त विषयों पर भौतिकी से संबंधित C भाषा में प्रोग्राम

संदर्भ पुस्तकें:

- 1. कंप्यूटर विज्ञान, आर. धीन दयालु (टाटा मैकग्रॉ हिल)
- 2. कंप्यूटर सिस्टम आर्किटेक्चर, मॉरिस-मानो (प्रेंटिस हॉल ऑफ इंडिया)
- 3. कंप्यूटर ओरिएंटेड न्यूमेरिकल मेथड्स, वी. राजारमन (प्रेंटिस हॉल ऑफ इंडिया)
- 4. गणितीय विधियाँ, पॉटर और गोल्डबर्ग (प्रेंटिस हॉल ऑफ इंडिया)
- 5. आंशिक अंतर समीकरणों के लिए कम्प्यूटेशनल विधियाँ, एम. के. जैन, एस. आर. के. लियंगर, आर. के. जैन, (न्यू एज इंटरनेशनल)
- 6. लाफोर रॉबर्ट, "ऑब्जेक्ट-ओरिएंटेड प्रोग्रामिंग इन सी++", वेट ग्रुप का, चौथा संस्करण।

सुझाए गए ई-स्रोत:

- $1.\ http://www.nptelvideos.in/2012/11/numerical-methods-and-programing.html$
- $2.\ http://www.nptelvideos.in/2012/11/numerical-methods-and-computation.html$
- 3. https://nptel.ac.in/courses/122106033/
- 4. https://nptel.ac.in/courses/122106033/25

पाठ्यक्रम सीखने के परिणाम:

पाठ्यक्रम के अंत तक, छात्रों को सक्षम होना चाहिए:

- 1. सामान्य संख्यात्मक विधियों की समझ और उन्हें अन्यथा कठिन गणितीय समस्याओं के अनुमानित समाधान प्राप्त करने के लिए कैसे उपयोग किया जाता है।
- 2. एल्गोरिदम का संवर्धन और जटिल समीकरणों को हल करना, संख्यात्मक तकनीक कंप्यूटर वैज्ञानिकों और इंजीनियरों को आने वाली चुनौतियों का समाधान करने में अनिवार्य हैं।
- 3. संख्यात्मक विधियों के महत्व और अनुप्रयोगों को समझना।
- 4. संख्यात्मक विश्लेषण की मूलभूत समस्याओं के लिए संख्यात्मक विधियों की सहज और कार्यशील समझ प्राप्त करना।
- 5. कंप्यूटर का उपयोग करके संख्यात्मक विधियों के कार्यान्वयन में ज्ञान प्राप्त करना।
- 6. इन विधियों में त्रुटि का पता लगाना और उसका विश्लेषण और भविष्यवाणी करना।
- 7. C भाषा का उपयोग करके कंप्यूटर प्रोग्रामिंग में संख्यात्मक विधियों का कार्यान्वयन।
- 8. इंजीनियरिंग समस्याओं में गणित को लागू करना।
- 9. इसके द्वारा, कई समीकरणों की वास्तविक मूल को खोजने की संभावना (जिनका सरल तरीकों से वास्तविक मूल का पता लगाना संभव नहीं है)

पाठ्यक्रम पूरा होने के बाद छात्रों ने कार्यात्मक पदानुक्रमित कोड संगठन को समझने जैसे सीखने के परिणाम विकिसत होंगे। समस्या विषय डोमेन के आधार पर डेटा संरचनाओं को परिभाषित और प्रबंधित करने की क्षमता। पाठ्य सूचना, वर्ण और स्ट्रिंग के साथ काम करने की क्षमता। कंप्यूटर प्रोग्रामिंग में संख्यात्मक विश्लेषण के एल्गोरिदम का अध्ययन वित्तीय बाजारों के पूर्वानुमान जैसे कई क्षेत्रों को हल करने और समझने के लिए उपयोगी हो सकता है। सुरक्षित भवन और वाहन डिजाइन करने के लिए इंजीनियरिंग में इसके कई अनुप्रयोग हैं।

पाठ्यक्रम सेमेस्टर-V UG 0810-PHY-75P-303-भौतिकी लैब-V

2.2		7-73F-303-411(147) (14-1		2.0	
सेमेस्टर	पाठ्यक्रम का कोड	पाठ्यक्रम/पेपर का शीर्षक	NHEQF स्तर	क्रेडिट	
V	UG-0810-PHY-75P-303	भौतिकी प्रायोगिक प्रयोगशाला- v 7 4			
पाठ्यक्रम का स्तर	पाठ्यक्रम का प्रकार	पाठ्यक्रम का वितरण प्रकार			
प्रारंभिक	प्रमुख/लघु	प्रायोगिक, एक सौ बीस घंटे का प्रायोगिक, जिसमें प्रायोगिक घंटों के दौरान निदानात्मक और रचनात्मक मूल्यांकन शामिल है।			
पूर्वापेक्षाएँ	केंद्रीय माध्यमिक शिक्षा बोर्ड या समकक्ष के भौतिकी और गणित पाठ्यक्रम।				
पाठ्यक्रम के उद्देश्य	भौतिकी प्रयोगशाला का उद्देश्य है: 1. भौतिक घटनाओं और नियमों की जांच करना 2. सैद्धांतिक अवधारणाओं और सिद्धांतों को सत्यापित करना 3. प्रयोगात्मक तकनीक और विधियाँ विकसित करना 4. भौतिक राशियों और गुणों को मापना 5. डेटा का विश्लेषण करना और निष्कर्ष निकालना 6. परिकल्पनाओं और मॉडलों का परीक्षण करना 7. नए विचारों और तकनीकों का पता लगाना 8. भौतिक सिद्धांतों के व्यावहारिक अनुप्रयोग विकसित करना				

9. छात्रों को प्रयोगात्मक विधियों और तकनीकों में प्रशिक्षित करना ये प्रयोग हमें भौतिकी के मूलभूत नियमों और हमारे दैनिक जीवन में उनके अनुप्रयोगों को बेहतर ढंग से समझने में मदद करते हैं!

कॉलेज समतुल्य मानकों के नए प्रयोग करने के लिए स्वतंत्र हैं। शैक्षणिक सत्र की शुरुआत से पहले संयोजक, अध्ययन बोर्ड द्वारा इसकी सूचना और अनुमोदन किया जाना चाहिए। कॉलेज के लिए नीचे सूचीबद्ध कम से कम दस प्रयोगों का एक प्रयोगात्मक सेट-अप रखना बाध्यकारी है। यदि छात्र द्वारा किए गए प्रयोगों की संख्या आठ से कम है, तो अंतिम परीक्षा में उसके अंकों को आनुपातिक आधार पर घटा दिया जाएगा। प्रयोगशाला परीक्षा का पेपर केंद्र में उपलब्ध आठ या अधिक प्रयोगों में से बाहरी परीक्षक द्वारा निर्धारित किया जाएगा। परीक्षा योजना-

विद्यार्थी को परीक्षा में दो प्रयोग करना आवश्यक है | परीक्षा दो दिन चलेगी | प्रत्येक दिन परीक्षा समय 4) घंटे होगा

अंक वितरण-

प्रायोगिक-1	प्रायोगिक-2	मौखिक	रिकॉर्ड(Record)	अधिकतम अंक
30	30	10	10	80

प्रायोगिक परीक्षा में अंक विभाजन

सिद्धांत/सूत्र	चित्र/परिपथ	अवलोकन	गणना	परिणाम/त्रुटि	सावधानियां
4	4	10	6	4	2

C में प्रोग्राम लिखना और निष्पादित करना

- 1. धारावाही कुंडली का चुंबकीय क्षेत्र: निर्दिष्ट ज्यामिति (जैसे, गोलाकार, आयताकार) और आयामों वाली कुंडली से प्रवाहित करंट के कारण अंतरिक्ष में किसी दिए गए बिंदु पर चुंबकीय क्षेत्र की गणना करने के लिए एक C प्रोग्राम विकसित करना।
- 2. बिंदु आवेशों का विद्युत क्षेत्र: ज्ञात स्थितियों और परिमाणों वाले बिंदु आवेशों की प्रणाली के कारण किसी विशिष्ट स्थान पर विद्युत क्षेत्र की गणना करने के लिए एक C प्रोग्राम डिज़ाइन करना।
- 3. LCR परिपथ आवृत्ति प्रतिक्रिया: आवृत्तियों की एक श्रृंखला में प्रतिबाधा और चरण बदलाव जैसी मात्राओं की गणना करके प्रतिरोधकों (L), कैपेसिटर (C), और प्रेरक (R) वाले परिपथ की आवृत्ति अनुक्रिया का विश्लेषण करने के लिए एक C प्रोग्राम लिखना।
- 4. लीजेंड्रे फ़ंक्शन मूल्यांकन: श्रृंखला प्रतिनिधित्व का उपयोग करके एक विशिष्ट डिग्री और तर्क के लीजेंड्रे फ़ंक्शन की गणना करने के लिए एक C प्रोग्राम विकसित करना।
- 5. हर्मिट बहुपद मूल्यांकन: श्रृंखला विस्तार के माध्यम से एक विशेष डिग्री और तर्क के हर्मिट बहुपदों की गणना करने के लिए एक C प्रोग्राम डिज़ाइन करना।
- 6. सरल कार्यों के लिए टेलर श्रृंखला विस्तार: टेलर श्रृंखला विस्तार का उपयोग करके एक विशिष्ट बिंदु पर विभिन्न गणितीय कार्यों के मूल्य का अनुमान लगाने के लिए एक C प्रोग्राम लिखना।

- 7. फाइबोनैचि अनुक्रम निर्माण: एक निर्दिष्ट संख्या तक फाइबोनैचि अनुक्रम उत्पन्न करने के लिए एक सी प्रोग्राम विकसित करना।
- 8. न्यूटन-राफसन विधि के साथ मूल ढूँढना: एक C प्रोग्राम डिज़ाइन करें जो किसी दिए गए अरेखीय समीकरण के मूल को ज्ञात करने के लिए न्यूटन-राफसन विधि का उपयोग करना।
- 9. घनाकृतिक (क्यूबिक) स्प्लाइन इंटरपोलेशन: डेटा बिंदुओं के एक सेट के लिए क्यूबिक स्प्लाइन इंटरपोलेशन करने के लिए एक C प्रोग्राम लिखें, जो ज्ञात बिंदुओं के बीच मूल्यों के अनुमान को सक्षम करता हो।
- 10. टेलर श्रृंखला के साथ फ़ंक्शन सन्निकटन: एक निर्दिष्ट अंतराल पर अपने टेलर श्रृंखला प्रतिनिधित्व द्वारा एक फ़ंक्शन का अनुमान लगाने के लिए एक C प्रोग्राम लिखना।
- 11. प्रायोगिक डेटा के लिए रैखिक प्रतिगमन: एक C प्रोग्राम विकसित करें जो प्रायोगिक डेटा बिंदुओं के एक सेट पर रैखिक प्रतिगमन विश्लेषण करता है, एक सीधी रेखा को फिट करता है और ढलान और अवरोधन के बारे में जानकारी प्रदान करता है।
- 12. साधारण अंतर समीकरण सॉल्वर (रंगे-कुट्टा): एक C प्रोग्राम डिज़ाइन करें जो साधारण अंतर समीकरणों को संख्यात्मक रूप से हल करने के लिए रंगे-कुट्टा पद्धति को नियोजित करता है।
- 13. ट्रेपेज़ॉइडल समाकलन नियम: किसी दिए गए अंतराल पर किसी फ़ंक्शन के निश्चित अभिन्न अंग को संख्यात्मक रूप से अनुमानित करने के लिए एक C प्रोग्राम में ट्रेपेज़ॉइडल नियम को लिखना।
- 14. सिम्पसन का समाकलन नियम: एक C प्रोग्राम विकसित करें जो संख्यात्मक एकीकरण के लिए सिम्पसन के नियम का उपयोग करता है, जो ट्रेपेज़ॉइडल नियम की तुलना में निश्चित अभिन्न अंग का अधिक सटीक अनुमान प्रदान करता हो।
- 15. परिमित अंतर विधि के साथ प्रसार समीकरण: एक C प्रोग्राम लिखें जो परिमित अंतर विधियों का उपयोग करके प्रसार समीकरण को हल करता है, एक परिभाषित स्थानिक और लौकिक डोमेन पर प्रसार प्रक्रिया का अनुकरण करता हो।
- 16. जी.एम. ट्यूब का उपयोग करके गामा किरणों के लिए व्युत्क्रम वर्ग नियम को सत्यापित करना।
- 17. (Cs137 और Co60) दो-स्रोत विधि का उपयोग करके जी.एम. ट्यूब के मृत समय को मापना।
- 18. जी.एम. ट्यूब का उपयोग करके गामा किरण स्रोत के लिए सीसा और एल्यूमीनियम के रैखिक क्षीणन गुणांक (µ) का निर्धारण करना।
- 19. जी.एम. ट्यूब का उपयोग करके बीटा-उत्सर्जक स्रोत (TI 204 / Sr90) से बीटा कणों की अंतिम बिंदु ऊर्जा का अनुमान लगाना।

सुझाई गई पुस्तकें और संदर्भ-

सुझाए गए ई-संसाधन:

पाठ्यक्रम सीखने के परिणाम:

पाठ्यक्रम के अंत तक, छात्रों को निम्नलिखित में सक्षम होना चाहिए:

- 1. गणित और इंजीनियरिंग के ज्ञान को लागू करने का कौशल।
- 2. एल्गोरिदम डिजाइन करने, प्रक्रियाओं को विकसित करने और C भाषा में प्रोग्राम को निष्पादित करने के साथ-साथ डेटा का विश्लेषण और व्याख्या करने की समझ।

- 3. आर्थिक, पर्यावरणीय, सामाजिक, नैतिक, स्वास्थ्य और सुरक्षा, विनिर्माण क्षमता और स्थिरता जैसी यथार्थवादी बाधाओं के भीतर वांछित जरूरतों को पूरा करने के लिए एक प्रणाली, घटक या प्रक्रिया को डिजाइन करने की क्षमता विकशित होती है।
- 4. समस्या समाधान के लिए विभिन्न संख्यात्मक तरीकों का कार्यान्वयन।
- 5. वैकल्पिक संख्यात्मक तरीकों के उपयोग में लाभ और नुकसान को समझना।
- 6. त्रुटि अनुमानों के महत्व को समझना और त्रुटि मानदंड का उपयोग करना।

पाठ्यक्रम सेमेस्टर-VI UG 0810-PHY-76T-304- पदार्थ भौतिकी

सेमेस्टर पाठ्यक्रम का कोड	पाठ्यक्रम/पेपर का शीर्षक	NHEQF स्तर	क्रेडिट
---------------------------	--------------------------	------------	---------

VI	UG 0810-PHY-76T-304	पदार्थ भौतिकी 7			
पाठ्यक्रम का स्तर	पाठ्यक्रम का प्रकार	पाठ्यक्रम का वितरण प्रकार			
प्रारंभिक	प्रमुख/लघु	व्याख्यान, व्याख्यान समय के दौरान निदानात्मक और रचनात्मक मूल्यांकन सहित साठ व्याख्यान।			
पूर्वापेक्षाएँ		॥ समकक्ष के भौतिकी और गणित पाठ्यक्रम।			
पाठ्यक्रम के उद्देश्य	इस कोर्स का उद्देश्य छात्रों को प उद्देश्य ठोस पदार्थों के गुणों पर संरचना को कैसे प्रभावित करते	ग्दार्थों के भौतिकी की व्यापक समझ प्रदान ध्यान केंद्रित करना और यह बताना है कि हैं।	करना है। इस व ये गुण उनकी सं	होर्स का रचना या	

इकाई- ।

परिचय: पदार्थ विज्ञान और अभियांत्रिकी , अभियांत्रिकी पदार्थी का वर्गीकरण, संरचना के स्तर, पदार्थी का संरचना-गुण संबंध।

क्रिस्टल ज्यामिति और संरचना निर्धारण: आकाशीय जालक, आकाशीय जालक और क्रिस्टल संरचना, क्रिस्टल की दिशाएँ और समतल, मिलर सूचकांक, ब्रैग का एक्स-रे विवर्तन का नियम, पाउडर विधि, संरचना निर्धारण। घनात्मक क्रिस्टल के लिए विलोपन नियम।

इकाई-॥

ठोस पदार्थों में रासायनिक बंध: बंध ऊर्जा, बंध प्रकार और बंध लंबाई, आयनिक बंध , आयनिक क्रिस्टल जालक ऊर्जा। मैडेलुंग स्थिरांक, सहसंयोजक बंध, धात्विक बंध, द्वितीयक बंध, बंध प्रकृति और गुणों में परिवर्तन।

ठोस पदार्थों की संरचना: क्रिस्टलीय और अक्रिस्टलीय अवस्था , ठोसकरण और क्रिस्टलीकरण , कांच संक्रमण

इकाई- ॥।

ठोस अवस्था में बैंड सिद्धांत: बैंड का निर्माण (गुणात्मक चर्चा), क्रिस्टल के आवर्त क्षेत्र में इलेक्ट्रॉन (क्रोनिंग-पैनी मॉडल), ब्रिलुइन क्षेत्र, बैंड में अवस्थाओं की संख्या, ब्लॉक प्रमेय और ब्लॉक फलन, बैंड का विसरण संबंध, बैंड आकार, इलेक्ट्रॉन का प्रभावी द्रव्यमान, धातुओं, कुचालकों और आंतरिक अर्धचालकों के बीच अंतर।

पदार्थों के प्रकाशीय गुण : परिचय, प्रकाशीय पदार्थों का वर्गीकरण, पदार्थ के साथ प्रकाश की परस्पर क्रिया, धातुओं, विद्युतरोधकों और अर्धचालकों में अवशोषण, परावर्तन, अपवर्तन, संचरण और प्रकीर्णन,ट्रैप (Traps), उत्तेजित अवस्था (Excitons), रंग केंद्र (Colour Centers), टॉक और लैम्बर्ट बीयर नियम (Tauc and Lambert Beer laws), फोटोनिक पदार्थों के प्रकाशीय गुण।

इकाई- IV

परावैद्युत गुण: ध्रुवण, तापमान और आवृत्ति का प्रभाव। विद्युत भंजन, विद्युत ध्रुवणता का चिरसम्मत सिद्धांत, सामान्य और असामान्य परिक्षेपण, जटिल परावैद्युत स्थिरांक और हानि, लौहविधुतीय पदार्थ, परावैद्युतांक स्थिरांक और हानि का मापन। लौहविधुत्व में P-E शैथिल्य वक्र। पायरोइलेक्ट्रिक और पीजोइलेक्ट्रिसिटी की गुणात्मक विश्लेषण | (Qualitative discussion of pyroelectric and piezoelectricity)।

अवस्था आरेख और अवस्था नियम , एकल घटक प्रणाली, द्वि-अवस्था आरेख, शीतलन के दौरान सूक्ष्मसंरचना परिवर्तन,लीवर नियम (Lever rule), अवस्था आरेख नियम (Phase diagram rules), अवस्था आरेखों के अनुप्रयोग।

बहुलक : बहुलक का वर्गीकरण (Classification of polymers), दीर्घ श्रृंखला बहुलक की संरचना , दीर्घ श्रृंखला बहुलक की क्रिस्टलीयता ।

सुझाई गई पुस्तकें और संदर्भ -

- 1. मैटेरियल्स साइंस एंड इंजीनियरिंग, वी. राघवन, प्रेंटिस-हॉल संस्करण 1993.
- 2. सॉलिड स्टेट इलेक्ट्रॉनिक इंजीनियरिंग मैटेरियल्स, एस.ओ. पिल्लई, विले ईस्टर्न लिमिटेड.
- 3. सॉलिड स्टेट फिजिक्स, सी. किटेल वी. संस्करण.
- 4. इंट्रोडक्शन टू सॉलिड, एल. अजारॉफ.
- 5. सॉलिड स्टेट फिजिक्स, एन.डब्ल्यू. एश्रोफ्ट और एन.डी. मर्मिन सीबीएस पब्लिशिंग एशिया लिमिटेड.

पाठ्यक्रम के अंत तक, छात्रों को निम्नलिखित में सक्षम होना चाहिए:

- 1 . इस पाठ्यक्रम को पूरा करने वाले छात्रों को विभिन्न उद्योगों में पदार्थ इंजीनियर, पदार्थ तकनीशियन, उत्पाद परीक्षक या धातुविद बनने के अवसर प्राप्त होंगे
- 2 . छात्र पदार्थ विज्ञान और भौतिकी से संबंधित विषयों के संचार में लिखित और मौखिक संचार कौशल का प्रदर्शन करेंगे।
- 3. छात्र वैज्ञानिक पद्धति और प्रक्रिया की अपनी समझ को प्रदर्शित करते हुए एक प्रयोग (या प्रयोगों की श्रृंखला) डिजाइन और आयोजित करेंगे। छात्र परिणामों की व्याख्या और विश्लेषण करने और अपने डेटा द्वारा समर्थित निष्कर्ष निकालने के लिए आवश्यक विश्लेषणात्मक विधियों की समझ का प्रदर्शन करेंगे।
- 4. छात्र भौतिक घटनाओं के मॉडलिंग के लिए विश्लेषणात्मक दृष्टिकोण की गहन समझ का प्रदर्शन करेंगे।
- 5. छात्र समाज पर भौतिकी और विज्ञान के प्रभाव को समझेंगे

पाठ्यक्रम सेमेस्टर-VI UG0810-PHY-76T-305-परमाणु एवं आणविक भौतिकी

सेमेस्टर	पाठ्यक्रम का कोड	पाठ्यक्रम/पेपर का शीर्षक NHEQF स्तर क्रेर्ग			
VI	UG 0810-PHY-76T-305	परमाणु एवं आणविक भौतिकी	7	4	
पाठ्यक्रम का स्तर	पाठ्यक्रम का प्रकार	पाठ्यक्रम का वितरण प्रकार			
प्रारंभिक	प्रमुख/लघु	व्याख्यान, व्याख्यान समय के दौरान निदानात्मक और रचनात्मक मूल्यांकन सहित साठ व्याख्यान।			
पूर्वापेक्षाएँ	केंद्रीय माध्यमिक शिक्षा बोर्ड या समकक्ष के भौतिकी और गणित पाठ्यक्रम।				
पाठ्यक्रम के उद्देश्य	प्रयोगात्मक समझ और अनुप्रयो संदर्भ में स्पेक्टोस्कोपी की मजब	ठ्यक्रम का उद्देश्य परमाणु और आणविक स्पेक्ट्रोस्कोपी के व्यापक दृष्टिकोण, अंतर्दृष्टि, सैद्धांतिक और योगात्मक समझ और अनुप्रयोग प्रदान करना है। पाठ्यक्रम का उद्देश्य शासकीय सिद्धांतों, कानूनों के दर्भ में स्पेक्ट्रोस्कोपी की मजबूत समझ विकसित करना है। इन मूल बातों के उपयोग से, इंस्ट्रूमेंटेशन ोर वर्णक्रम की रिकॉर्डिंग और इसके विश्लेषणात्मक मूल्यांकन के संदर्भ में अनुप्रयोग भागों का भी पता गाया जाता है।			

इकाई-। एकलसयोंजी तथा द्विसंयोजी वर्णक्रम

कांटम सिद्धांत से पृष्ठभूमि: चार कांटम संख्याएँ, सदिश मॉडल, S, P, D, F संकेतन, S-S तथा।-। युग्मन से प्राप्त वर्णक्रमीय शब्द, उत्सर्जन और अवशोषण संभावनाएँ, उत्तेजित अवस्थाओं की अर्ध-आयु, आदर्श वर्णक्रमीय रेखा, वर्णक्रमीय रेखाओं की चौडाई: प्राकृतिक और डॉप्लर चौडाई।

एकल/द्वि-संयोजी स्पेक्ट्रम: एकल संयोजी परमाणुओं (हाइड्रोजन समान परमाणुओं) के वर्णक्रम , दोहरी फाइन संरचना हाइड्रोजन रेखाएँ, एकलसयोंजी परमाणुओं के लिए स्क्रीनिंग स्थिरांक, श्रृंखला सीमाएँ, समस्थानिक प्रभाव, हाइड्रोजन और ड्यूटेरियम वर्णक्रम से m/M की गणना, हीलियम का वर्णक्रम , एकल तथा त्रिक श्रृंखला।

(15 व्याख्यान)

इकाई-॥ चुंबकीय क्षेत्र और एक्स-रे वर्णक्रममापी

ऊर्जा स्तरों पर चुंबकीय क्षेत्र का प्रभाव: कक्षीय और प्रचक्रण आघूर्ण के लिए जाइरोमैग्नेटिक अनुपात, लांदे जी फैक्टर, प्रबल तथा दुर्बल चुंबकीय क्षेत्र प्रभाव, उदाहरणात्मक मामले: H, Na तथा Ca.

एक्स-रे वर्णक्रम: एक्स-रे, उत्पादन, सतत एक्स-रे स्पेक्ट्रम, अभिलाक्षणिक एक्स-रे स्पेक्ट्रम, डुआन-हंट सीमा, एक्स-रे ऊर्जा अवस्थाओं का H-जैसा अभिलक्षण, मोसले का नियम, द्विक सूक्ष्म संरचना, एक्स-रे अवशोषण वर्णक्रम, अवशोषण किनारा, निकट किनारे और विस्तारित सूक्ष्म संरचना की गुणात्मक चर्चा, परमाणुओं की परमाणु संख्या का निर्धारण।

(15 व्याख्यान)

इकाई-॥।

Dy. Registrar
(Academic)
University of Rajasthan
JAIPUR 5

द्वि-परमाणुक और त्रि-परमाणुक अणु

अणु निर्माण: इलेक्ट्रॉनों का सहभाजन(sharing), आणविक कक्षा का निर्माण, H₂, N₂ तथा O₂ अणुओ की गुणात्मक चर्चा, द्विपरमाणुक अणुओं की इलेक्ट्रॉनिक अवस्थाओं के लिए इलेक्ट्रॉनिक स्तर और क्वांटम संख्याएँ: एकल तथा त्रिक अभिलक्षण।

ऊर्जा स्तर: द्वि-परमाणुक और त्रि-परमाणुक अणु, अणुओं का वर्गीकरण और सामान्य विधा, घूर्णी ऊर्जा स्तर, अंतर- नाभिक दूरी, कंपन ऊर्जा स्तर, बल स्थिरांक, अन-हार्मोनिकी, पृथक्करण ऊर्जा, घूर्णी और कंपन ऊर्जा पर समस्थानिक प्रभाव। द्वि-परमाणुक अणुओं का वर्णक्रम : शुद्ध घूर्णन वर्णक्रम , वरण नियम, कंपन - घूर्णन वर्णक्रम , वरण नियम, P, Q, R शाखाएँ, फ्रैंक कॉन्डॉन सिद्धांत। (15 व्याख्यान)

इकाई-IV प्रायोगिक तकनीकें

उत्सर्जन स्पेक्ट्रोस्कोपी: उत्सर्जन स्पेक्ट्रोस्कोपी का मूल ब्लॉक आरेख, उत्सर्जन स्रोत; विक्षेपण उपकरण: प्रिज्म, समतल ग्रेटिंग, अवतल ग्रेटिंग, UV, दृश्य और IR क्षेत्रों के लिए प्रिज्म पदार्थ, नियत विचलन प्रणाली, एकवर्णक, माउंटिंग, प्रिज्म और ग्रेटिंग का विभेदन, उच्च विभेदन के लिए फ़ेब्री-पेरोट और लुमर प्लेट।

अवशोषण स्पेक्ट्रोस्कोपी: अवशोषण स्पेक्ट्रोस्कोपी का मूल ब्लॉक आरेख, एक्स-रे, UV, दृश्य और IR क्षेत्रों में अवशोषण अध्ययन के लिए सतत स्रोत, एकल पुंज और दोहरी पुंज उपकरण, संसूचन प्रणाली: फोटोमल्टीप्लायर ट्यूब, बोलोमीटर।

रमन स्पेक्ट्रोस्कोपी: रमन प्रभाव, स्टोक और प्रति स्टोक रेखाएँ, रमन विस्थापन, रमन वर्णक्रम के लिए वरण नियम, IR और रमन वर्णक्रम से H_2O तथा CO_2 अणुओं की संरचना का निर्धारण, रमन उत्तेजना के लिए तीव्र स्रोत के रूप में लेजर (15 व्याख्यान)

सुझाई गई पुस्तकें और संदर्भ:

- 1. परमाणु स्पेक्ट्रा और परमाणु संरचना, जी. हर्ज़बर्ग, 1944, डोवर प्रकाशन, न्यूयॉर्क।
- 2. परमाणु स्पेक्ट्रा का परिचय, एच.ई. व्हाइट, 1934, मैकग्रॉ हिल बुक कंपनी, न्यूयॉर्क और लंदन।
- 3. परमाणु स्पेक्ट्रा, एच.जी. कुह्न, 1962, अकादिमक प्रेस, कैलिफोर्निया विश्वविद्यालय
- 4. परमाणुओं और अणुओं का भौतिकी, बी.एच. ब्रैंसडेन और सी.जे. जोआचेन, दूसरा संस्करण, 2019, पियर्सन एजुकेशन लिमिटेड।
- 5. एक्स-रे स्पेक्ट्रोस्कोपी, बी.के. अग्रवाल, दूसरा संस्करण, 1931, ऑप्टिकल विज्ञान में स्प्रीगर श्रृंखला।
- 6. ऑप्टिक्स और परमाणु भौतिकी, डी.पी. खंडेलवाल, 2015, हिमालय पब्लिशिंग हाउस, नई दिल्ली।
- आणविक स्पेक्ट्रोस्कोपी के मूल सिद्धांत, सी.एन. बैनवेल, ई.एम. मैककैश, चौथा संस्करण, 1994, मैकग्रॉ-हिल एजुकेशन।
- 8. परमाणु एवं आणविक स्पेक्ट्रा: लेजर, राज कुमार, केएनआरएम पब्लिकेशन, मेरठ

Dy. Registrar
(Academic)
University of Rajasthan
JAIPUR 52

सुझाए गए ई-संसाधन:

ऑनलाइन व्याख्यान नोट्स और पाठ्यक्रम पदार्थ :

- चयनित वीडियो का मूल्यांकन एनपीटीईएल: एनओसी: परमाणु और आणविक भौतिकी, समन्वयक: प्रो. अमल कुमार दास से किया जा सकता है। उदाहरण के लिए
- www.digimat.in/nptel/courses/video/115105100/L01.html, यहाँ अंतिम L01 व्याख्यान संख्या व्याख्यान संख्या 01 को दर्शाता है। http://www.digimat.in/downloads/html-browser/physics.pdf पृष्ठ संख्या 93-94 दिए गए लिंक पर क्लिक करके।
- चयनित व्याख्यान नोट्स का मूल्यांकन एनपीटीएल वेबसाइट http://www.digimat.in/downloads/pdfbrowser/physics.pdf, पृष्ठ संख्या 93-94 दिए गए लिंक पर क्लिक करके किया जा सकता है।
- चयनित हस्तलिखित नोट्स का मूल्यांकन http://sites.iiserpune.ac.in/~bhasbapat/phy420.html से किया जा सकता है।

पाठ्यक्रम के सीखने के परिणाम (Course Learning Outcomes)

इस पाठ्यक्रम के अंत तक छात्र परमाणु और अणु स्पेक्ट्रोस्कोपी (atomic and molecular spectroscopy) की गहन समझ विकसित कर लेंगे। इसमें शामिल हैं:

- नियंत्रित करने वाले सिद्धांत और नियम (governing principles and laws)
- विभिन्न प्रायोगिक तकनीकें (various experimental techniques)
- विश्लेषणात्मक दृष्टिकोण (analytical approaches)
- सीमाएं (limitations)
- दैनिक जांच और प्रारंभिक शोध के लिए अनुप्रयोग (application for day to day investigation and elementary research)

छात्रों को यह भी पता चलेगा कि स्पेक्ट्रोस्कोपी का मूलभूत शोध, स्वास्थ्य विज्ञान, फोरेंसिक विज्ञान, खाद्य विज्ञान, पेंट और दवा उद्योगों सहित विभिन्न क्षेत्रों में व्यापक दायरा है।

पाठ्यक्रम सेमेस्टर-VI

UG-0810-PHY-76P-306- भौतिकी प्रयोगशाला-VI

	יייי איייייייייייייייייייייייייייייייי						
सेमेस्टर	पाठ्यक्रम का कोड	पाठ्यक्रम/पेपर का शीर्षक	NHEQF स्तर	क्रेडिट			
VI	UG-0810-PHY-76P-306	भौतिकी प्रायोगिक प्रयोगशाला-VI 7 4					
पाठ्यक्रम का स्तर	पाठ्यक्रम का प्रकार	पाठ्यक्रम का वितरण प्रकार					
प्रारंभिक	प्रमुख/लघु	प्रायोगिक, एक सौ बीस घंटे का प्रायोगिक, वि दौरान निदानात्मक और रचनात्मक मूल्यांक		ों के			
पूर्वापेक्षाएँ	केंद्रीय माध्यमिक शिक्षा बोर्ड या समकक्ष के भौतिकी और गणित पाठ्यक्रम।						
पाठ्यक्रम के उद्देश्य		ं की जांच करना सिद्धांतों को सत्यापित करना धियाँ विकसित करना । मापना र निष्कर्ष निकालना हा परीक्षण करना । पता लगाना	नुप्रयोगों को बेहतर	ढंग से			

परीक्षा योजना-

विद्यार्थी को परीक्षा में दो प्रयोग करना आवश्यक है | परीक्षा दो दिन चलेगी | प्रत्येक दिन परीक्षा समय 4 घंटे होगा

अंक वितरण-

प्रायोगिक-1	प्रायोगिक-2	मौखिक	रिकॉर्ड(Record)	अधिकतम अंक
30	30	10	10	80

प्रायोगिक परीक्षा में अंक विभाजन

सिद्धांत/सूत्र	चित्र/परिपथ	अवलोकन	गणना	परिणाम/त्रुटि	सावधानियां
4	4	10	6	4	2

प्रयोगात्मक सूची

- 1. दी गई पदार्थ का शैथिल्य वक्र खींचना और सार्वभौमिक B-H वक्र ट्रेसर (Universal B-H curve Tracer) की सहायता से प्रति चक्र प्रति इकाई आयतन ऊर्जा हानि निर्धारित करना
- 2 पदार्थ के क्रिस्टल संरचना का अध्ययन करना
- 3. पदार्थ में क्रिस्टल दोषों का अध्ययन करना
- 4. धातओं/मिश्र धातओं के सक्ष्मसंरचना का अध्ययन करना
- 5. पदार्थ के लिए जमनावन वक्र तैयार करना
- 6. प्लास्टिक के उष्मादढीकरण का अध्ययन करना
- 7. रासायनिक जंग (corrosion) की क्रियाविधि और उसके बचाव का अध्ययन करना
- 8. विभिन्न प्रकार के प्लास्टिक के गुणों का अध्ययन करना
- 9. मॉडलों की सहायता से ब्रावे जालिकायें (Bravais lattices) का अध्ययन करना
- 10. गेंदों के मॉडल का उपयोग करके क्रिस्टल संरचना और क्रिस्टल दोषों का अध्ययन करना
- 11. सूक्ष्मसंरचना परीक्षण के लिए नमूना तैयार करना: काटना, पीसना, चमकाना
- 12. स्पेक्ट्रोमीटर का उपयोग करके किंसी प्रिज्म की पदार्थ के लिए कॉची के स्थिरांक (Cauchy's constant) का निर्धारण करना
- 13. दी गई लेजर किरण का उपयोग करके किसी दिए गए वेज का कोण निर्धारित करना
- 14. खोखले प्रिज्म का उपयोग करके पानी के अपवर्तनांक का निर्धारण करना
- 15. हॉल प्रभाव का अध्ययन करना और हॉल गुणांक, वाहक (carrier) घनत्व और गतिशीलता जैसे विभिन्न मापदंडों की गणना करना
- 16. पारा की वर्णक्रमीय रेखाओं की सहायता से दिए गए नियत विचलन स्पेक्ट्रोमीटर (constant deviation spectrometer CDS) का अंशांकन करना और हाइड्रोजन लैंप का उपयोग करके रिडबर्ग स्थिरांक और बॉमर श्रेणी की सीमा निर्धारित करना।

सीखने के परिणाम

यह पाठ्यक्रम भौतिकी के विविध प्रकार के विषयों को शामिल करता है। पाठ्यक्रम पूरा करने पर छात्र सक्षम होंगे: i. मूलभूत भौतिक स्थिरांक का निर्धारण करना। ii. पदार्थ गुणों की अभिलक्षणिक बताना। iii. विकिरण और इसके अन्योन्यक्रिया का विश्लेषण करना। iv. प्रकाश के ध्रुवीकरण की जांच करना। v. प्रयोगशाला उपकरणों को संभालने में दक्षता विकसित करना।

